Patents by Inventor Adam L. Cohen

Adam L. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080157793
    Abstract: Multilayer probe structures for testing or otherwise making electrical contact with semiconductor die or other electronic components are electrochemically fabricated via depositions of one or more materials in a plurality of overlaying and adhered layers. In some embodiments the structures may include configurations intended to enhance functionality, buildability, or both.
    Type: Application
    Filed: October 30, 2007
    Publication date: July 3, 2008
    Inventors: Richard T. Chen, Ezekiel J.J. Kruglick, Christopher A. Bang, Vacit Arat, Adam L. Cohen, Kievn Kim, Gang Zhang, Dennis R. Smalley
  • Publication number: 20080142369
    Abstract: Embodiments of the invention provide a package for holding an integrated circuit or other electronic component and/or a packaged integrated circuit or electronic component which is formed at least in part via an electrochemical fabrication process from a plurality of adhered layers of conductive and dielectric materials.
    Type: Application
    Filed: November 20, 2007
    Publication date: June 19, 2008
    Inventors: Adam L. Cohen, Vacit Arat, Michael S. Lockard
  • Patent number: 7384530
    Abstract: The invention includes methods of fabrication and apparatuses. In at least some embodiments of the applicants' invention, the methods include processes of: maskless selective deposition of non-layered structures, selective etching and/or deposition without use of a separate mask and/or lithography techniques, retaining selected portions of sacrificial material during removal (e.g. etching) of other portions of sacrificial material, depositing materials other than the structural and sacrificial materials, including more than one type of structural and/or sacrificial material, and fabrication of interlacing elements. Embodiments of the methods of the invention provide increased capabilities, properties, flexibility and in the fabrication of three-dimensional structures by electro-deposition or other techniques.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: June 10, 2008
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Dennis R. Smalley
  • Publication number: 20080121343
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: January 16, 2008
    Publication date: May 29, 2008
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20080121618
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Application
    Filed: October 29, 2007
    Publication date: May 29, 2008
    Inventor: Adam L. Cohen
  • Publication number: 20080110857
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Application
    Filed: October 29, 2007
    Publication date: May 15, 2008
    Inventor: Adam L. Cohen
  • Publication number: 20080110856
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Application
    Filed: October 29, 2007
    Publication date: May 15, 2008
    Inventor: Adam L. Cohen
  • Patent number: 7372616
    Abstract: Various embodiments of the invention are directed to various microdevices including sensors, actuators, valves, scanning mirrors, accelerometers, switches, and the like. In some embodiments the devices are formed via electrochemical fabrication (EFAB™).
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: May 13, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, John D. Evans
  • Patent number: 7368044
    Abstract: Electrochemical Fabrication techniques are used to modify substrates or to form multilayer structures (e.g. components or devices) from a plurality of overlaying and adhered layers. Masks are used to selectively etch or deposit material. Some masks may be of the contact type and may be formed of multiple materials some of which may be support materials, some of which may be mating materials for contacting a substrate and some may be intermediate materials. In some embodiments the contact masks may have conformable contact surfaces (i.e. surfaces with sufficient flexibility or deformability that they can substantially conform to surface of the substrate to form a seal with it) or they may have semi-rigid or even rigid surfaces. In embodiments where masks are used for selective deposition operations, etching operations may be performed after deposition to remove flash deposits (thin undesired deposits from areas that were intended to be masked).
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: May 6, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Dennis R. Smalley
  • Patent number: 7363705
    Abstract: Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: April 29, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Kieun Kim, Adam L. Cohen, Willa M. Larsen, Richard T. Chen, Ananda H. Kumar, Ezekiel J. J. Kruglick, Vacit Arat, Gang Zhang, Michael S. Lockard
  • Patent number: 7351321
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: April 1, 2008
    Assignee: Microfabrica, Inc.
    Inventor: Adam L. Cohen
  • Publication number: 20070287914
    Abstract: Embodiments of invention are directed to devices, and methods of forming them, that can be used for imaging interior volumes of the body. Particular embodiments are directed to improved intravascular ultrasound devices. In some embodiments the intravascular ultrasound devices are intended to be ‘forward-looking’; i.e., the image obtained by the device is of structures in front of, or distal to, the device.
    Type: Application
    Filed: April 11, 2007
    Publication date: December 13, 2007
    Inventor: Adam L. Cohen
  • Patent number: 7303663
    Abstract: Multilayer structures are electrochemically fabricated from at least one structural material (e.g. nickel), that is configured to define a desired structure and which may be attached to a substrate, and from at least one sacrificial material (e.g. copper) that surrounds the desired structure. After structure formation, the sacrificial material is removed by a multi-stage etching Operation. In some embodiments sacrificial material to be removed may be located within passages or the like on a substrate or within an add-on component. The multi-stage etching Operations may be separated by intermediate post processing activities, they may be separated by cleaning Operations, or barrier material removal Operations, or the like. Barriers may be fixed in position by contact with structural material or with a substrate or they may be solely fixed in position by sacrificial material and are thus free to be removed after all retaining sacrificial material is etched.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: December 4, 2007
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Dale S. McPherson
  • Publication number: 20070265648
    Abstract: Embodiments of invention are directed to devices, and methods of forming them, that can be used for thrombus extraction from intravascular regions. The small size of these devices may make them particularly suitable for extracting thrombus in narrow vessels such as those in the brain.
    Type: Application
    Filed: April 11, 2007
    Publication date: November 15, 2007
    Inventor: Adam L. Cohen
  • Patent number: 7291254
    Abstract: Treatment of substrates, formation of structures, and formation of multilayer structures using contact masks are disclosed where a non-parallel or non-simultaneous mating of various mask contact surfaces to a substrate surface occurs. Some embodiments involve bringing a relative planar mask contact surface and a relative planar substrate surface together at a small angle (but larger than an alignment tolerance associated with the system). Some embodiments involve flexing a mask to make it non-planar and bringing it into contact with a substrate such that progressively more contact between the mask and substrate occur until complete mating is achieved. Some embodiments involve use of gas or liquid pressure to bow a flexible or semi-flexible mask and use a linear actuator to bring the mating surfaces together and to bring the mask into a more planar configuration.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: November 6, 2007
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Dennis R. Smalley
  • Patent number: 7288178
    Abstract: Various embodiments of the invention provide techniques for forming structures (e.g. HARMS-type structures) via an electrochemical extrusion process. Preferred embodiments perform the extrusion processes via depositions through anodeless conformable contact masks that are initially pressed against substrates that are then progressively pulled away or separated as the depositions thicken. A pattern of deposition may vary over the course of deposition by including more complex relative motion between the mask and the substrate elements. Such complex motion may include rotational components or translational motions having components that are not parallel to an axis of separation. More complex structures may be formed by combining the electrochemical extrusion process with the selective deposition, blanket deposition, planarization, etching, and multi-layer operations of a multi-layer electrochemical fabrication process.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: October 30, 2007
    Assignee: Microfabrica, Inc.
    Inventors: Adam L. Cohen, Gang Zhang, Qui T. Le, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 7273812
    Abstract: Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: September 25, 2007
    Assignee: Microfabrica Inc.
    Inventors: Kieun Kim, Adam L. Cohen, Willa M. Larsen, Richard T. Chen, Ananda H. Kumar, Ezekiel J. J. Kruglick, Vacit Arat, Gang Zhang, Michael S. Lockard, Christopher A. Bang
  • Patent number: 7271888
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: September 18, 2007
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Patent number: 7259640
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: August 21, 2007
    Assignee: Microfabrica
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 7250101
    Abstract: Multilayer structures are electrochemically fabricated on a temporary (e.g. conductive) substrate and are thereafter bonded to a permanent (e.g. dielectric, patterned, multi-material, or otherwise functional) substrate and removed from the temporary substrate. In some embodiments, the structures are formed from top layer to bottom layer, such that the bottom layer of the structure becomes adhered to the permanent substrate, while in other embodiments the structures are form from bottom layer to top layer and then a double substrate swap occurs. The permanent substrate may be a solid that is bonded (e.g. by an adhesive) to the layered structure or it may start out as a flowable material that is solidified adjacent to or partially surrounding a portion of the structure with bonding occurs during solidification. The multilayer structure may be released from a sacrificial material prior to attaching the permanent substrate or it may be released after attachment.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: July 31, 2007
    Assignee: Microfabrica Inc.
    Inventors: Jeffrey A. Thompson, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley