Patents by Inventor Adam L. Cohen

Adam L. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110080236
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: October 6, 2010
    Publication date: April 7, 2011
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20110073479
    Abstract: Multi-layer structures are electrochemically fabricated from at least one structural material (e.g. nickel), that is configured to define a desired structure and which may be attached to a substrate, and from at least one sacrificial material (e.g. copper) that surrounds the desired structure. After structure formation, the sacrificial material is removed by a multi-stage etching operation. In some embodiments sacrificial material to be removed may be located within passages or the like on a substrate or within an add-on component. The multi-stage etching operations may be separated by intermediate post processing activities, they may be separated by cleaning operations, or barrier material removal operations, or the like. Barriers may be fixed in position by contact with structural material or with a substrate or they may be solely fixed in position by sacrificial material and are thus free to be removed after all retaining sacrificial material is etched.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 31, 2011
    Inventors: Adam L. Cohen, Michael S. Lockard, Dale S. McPherson
  • Publication number: 20110071432
    Abstract: A device for capturing a tissue sample from within a body comprises a needle slidably comprising a needle lumen extending therethrough to a needle opening in the distal end and a stylet slidably received in the needle lumen for movement between an extended position in which a tissue penetrating distal tip of the stylet extends out of the needle opening to penetrate target tissue and a retracted position in which the distal tip of the stylet is received within the needle opening to substantially seal the needle lumen. The stylet further comprises an anchoring feature located proximally of the tissue penetrating distal tip. The anchoring feature comprises a first gripping member including a first proximal facing abutting surface adjacent to a first tissue receiving gap. Movement of the stylet distally out of the needle lumen brings the first gripping member into engagement with surrounding tissue to anchor the stylet at a desired position within the body.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 24, 2011
    Inventors: Oscar R. Carrillo, JR., Adam L. Cohen, Michal Weisman, Yem Chin, Robert Devries
  • Publication number: 20110046651
    Abstract: A device includes a clip including first and second arms distal ends of which are biased apart and a core member including first and second portions connected to one another via a frangible link. The first portion includes a first protrusion for engaging a cut-out in the first arm. The frangible link is fractured when subjected to a load of at least a predetermined level deploying the clip. The device also includes a capsule slidably housing the core member and a proximal portion of the clip.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 24, 2011
    Inventors: Adam L. Cohen, Benjamin E. Morris, John Miser, Gregory R. Furnish, Gary A. Jordan
  • Publication number: 20110031183
    Abstract: Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.
    Type: Application
    Filed: August 31, 2010
    Publication date: February 10, 2011
    Inventors: Michael S. Lockard, Adam L. Cohen, Vacit Arat, Dennis R. Smalley
  • Patent number: 7878385
    Abstract: Embodiments of invention are directed to the formation of microprobes (i.e. compliant electrical or electronic contact elements) on a temporary substrate, dicing individual probe arrays, and then transferring the arrays to space transformers or other permanent substrates. Some embodiments of the invention transfer probes to permanent substrates prior to separating the probes from a temporary substrate on which the probes were formed while other embodiments do the opposite. Some embodiments, remove sacrificial material prior to transfer while other embodiments remove sacrificial material after transfer. Some embodiments are directed to the bonding of first and second electric components together using one or more solder bumps with enhanced aspect ratios (i.e. height to width ratios) obtained as a result of surrounding the bumps at least in part with rings of a retention material. The retention material may act be a solder mask material.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 1, 2011
    Assignee: Microfabrica Inc.
    Inventors: Ananda H. Kumar, Ezekiel J. J. Kruglick, Adam L. Cohen, Kieun Kim, Gang Zhang, Richard T. Chen, Christopher A. Bang, Vacit Arat, Michael S. Lockard, Uri Frodis, Pavel B. Lembrikov, Jeffrey A. Thompson
  • Publication number: 20100314257
    Abstract: Disclosed methods reduce the discontinuities that between individual layers of a structure that is formed at least in part using electrochemical fabrication techniques. Discontinuities may exist between layers of a structure as a result of up-facing or down-facing regions defined in data descriptive of the structure or they may exist as a result of building limitations, e.g., those that result in non-parallel orientation between a building axis and sidewall surfaces of layers. Methods for reducing discontinuities may be applied to all regions or only to selected regions of the structure. Methods may be tailored to improve the accuracy between an original design of the structure and the structure as fabricated or they may simply be used to smooth the discontinuities between layers. Methods may include deposition operations that selectively favor filling of the discontinuities and/or etching operations that selectively favor removal of material from protrusions that define discontinuities.
    Type: Application
    Filed: June 30, 2010
    Publication date: December 16, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20100314258
    Abstract: Embodiments are directed to electrochemically fabricating multi-layer three dimensional structures where each layer comprises at least one structural and at least one sacrificial material and wherein at least some metals or alloys are electrodeposited during the formation of some layers and at least some metals are deposited during the formation of some layers that are either difficult to electrodeposit and/or are difficult to electrodeposit onto. In some embodiments, the hard to electrodeposit metals (e.g. Ti, NiTi, W, Ta, Mo, etc.) may be deposited via chemical or physical vacuum deposition techniques while other techniques are used in other embodiments. In some embodiments, prior to electrodepositing metals, the surface of the previously formed layer is made to undergo appropriate preparation for receiving an electrodeposited material.
    Type: Application
    Filed: June 16, 2010
    Publication date: December 16, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Gang Zhang
  • Patent number: 7830228
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Microfabrica Inc.
    Inventors: Elliot R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20100276077
    Abstract: Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and/or the ability to form completely encapsulated and possibly hollow structures.
    Type: Application
    Filed: November 3, 2009
    Publication date: November 4, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20100270165
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: April 29, 2010
    Publication date: October 28, 2010
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20100264037
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Application
    Filed: May 28, 2010
    Publication date: October 21, 2010
    Inventor: Adam L. Cohen
  • Patent number: 7811427
    Abstract: Permanent or temporary alignment and/or retention structures for receiving multiple components are provided. The structures are preferably formed monolithically via a plurality of deposition operations (e.g. electrodeposition operations). The structures typically include two or more positioning fixtures that control or aid in the positioning of components relative to one another, such features may include (1) positioning guides or stops that fix or at least partially limit the positioning of components in one or more orientations or directions, (2) retention elements that hold positioned components in desired orientations or locations, and/or (3) positioning and/or retention elements that receive and hold adjustment modules into which components can be fixed and which in turn can be used for fine adjustments of position and/or orientation of the components.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 12, 2010
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Daniel I. Feinberg, Christopher A. Bang
  • Publication number: 20100241027
    Abstract: Some embodiments of the invention provide an instrument for mechanically removing segments of tissue from a patient during a minimally invasive surgical procedure. An exemplary instrument provides an inlet for receiving tissue a mechanism for cutting away received tissue and for simultaneously moving the cut away tissue away from the inlet to allow additional material to enter the inlet for removal wherein multiple specimens can be captured and eventually removed from the patient's body without the need of removing the instrument after each capture.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 23, 2010
    Inventor: Adam L. Cohen
  • Publication number: 20100193366
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Inventor: Adam L. Cohen
  • Publication number: 20100155253
    Abstract: Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 24, 2010
    Inventors: Kieun Kim, Adam L. Cohen, Willa M. Larsen, Richard T. Chen, Ananda H. Kumar, Ezekiel J. J. Kruglick, Vacit Arat, Gang Zhang, Michael S. Lockard, Christopher A. Bang
  • Publication number: 20100147695
    Abstract: Multilayer structures are electrochemically fabricated via depositions of one or more materials in a plurality of overlaying and adhered layers. Selectivity of deposition is obtained via a multi-cell controllable mask. Alternatively, net selective deposition is obtained via a blanket deposition and a selective removal of material via a multi-cell mask. Individual cells of the mask may contain electrodes comprising depositable material or electrodes capable of receiving etched material from a substrate. Alternatively, individual cells may include passages that allow or inhibit ion flow between a substrate and an external electrode and that include electrodes or other control elements that can be used to selectively allow or inhibit ion flow and thus inhibit significant deposition or etching. Single cell masks having a cell size that is smaller or equal to the desired deposition resolution may also be used to form structures.
    Type: Application
    Filed: January 8, 2010
    Publication date: June 17, 2010
    Inventor: Adam L. Cohen
  • Publication number: 20100136851
    Abstract: Embodiments of the invention provide electrochemical fabrication processes that may be used for the fabrication of space transformers or the co-fabrication of microprobe arrays along with one or more space transformers.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 3, 2010
    Inventors: Adam L. Cohen, Vacit Arat, Michael S. Lockard, Christopher A. Bang, Pavel B. Lembrikov
  • Publication number: 20100133952
    Abstract: Various embodiments of the invention are directed to various microdevices including sensors, actuators, valves, scanning mirrors, accelerometers, switches, and the like. In some embodiments the devices are formed via electrochemical fabrication (EFABĀ®).
    Type: Application
    Filed: December 14, 2009
    Publication date: June 3, 2010
    Inventors: Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, John D. Evans
  • Publication number: 20100134131
    Abstract: Multilayer probe structures for testing semiconductor die are electrochemically fabricated via depositions of one or more materials in a plurality of overlaying and adhered layers. In some embodiments the structures may include generally helical shaped configurations, helical shape configurations with narrowing radius as the probe extends outward from a substrate, bellows-like configurations, and the like. In some embodiments arrays of multiple probes are provided.
    Type: Application
    Filed: November 24, 2009
    Publication date: June 3, 2010
    Inventors: Richard T. Chen, Ezekiel J.J. Kruglick, Christopher A. Bang, Vacit Arat, Adam L. Cohen, Kieun Kim, Gang Zhang, Dennis R. Smalley