Patents by Inventor Adam L. Cohen

Adam L. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7611616
    Abstract: Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and/or the ability to form completely encapsulated and possibly hollow structures.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: November 3, 2009
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20090256583
    Abstract: Multilayer probe structures for testing or otherwise making electrical contact with semiconductor die or other electronic components are electrochemically fabricated via depositions of one or more materials in a plurality of overlaying and adhered layers. In some embodiments the structures may include configurations intended to enhance functionality, buildability, or both.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 15, 2009
    Inventors: Richard T. Chen, Ezekiel J.J. Kruglick, Christopher A. Bang, Vacit Arat, Adam L. Cohen, Kieun Kim, Gang Zhang, Dennis R. Smalley
  • Patent number: 7588674
    Abstract: Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: September 15, 2009
    Assignee: Microfabrica Inc.
    Inventors: Uri Frodis, Adam L. Cohen, Michael S. Lockard
  • Patent number: 7588545
    Abstract: The invention includes a forceps and collection assembly for acquiring and storing a plurality of tissue samples in a single pass, and accompanying mechanisms for use with the forceps and collection assembly. The accompanying mechanisms include an endoscope working channel cap assembly configured to minimize compression of a pouch of the forceps and collection assembly as it traverses a seal of the cap assembly, and a flush adapter configured to be coupled to the pouch so as to assist in removing tissue samples in the pouch by flowing fluid through the pouch.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: September 15, 2009
    Assignee: Boston Scientific SCIMED, Inc.
    Inventors: Adam L. Cohen, John B. Golden, Liem T. Vu
  • Publication number: 20090194425
    Abstract: A method of fabricating three-dimensional structures from a plurality of adhered layers of at least a first and a second material wherein the first material is a conductive material and wherein each of a plurality of layers includes treating a surface of a first material prior to deposition of the second material. The treatment of the surface of the first material either (1) decreases the susceptibility of deposition of the second material onto the surface of the first material or (2) eases or quickens the removal of any second material deposited on the treated surface of the first material. In some embodiments the treatment of the first surface includes forming a dielectric coating over the surface and the second material is electrodeposited (e.g. using an electroplating or electrophoretic process). In other embodiments the first material is coated with a conductive material that doesn't readily accept deposits of electroplated or electroless deposited materials.
    Type: Application
    Filed: January 29, 2009
    Publication date: August 6, 2009
    Inventors: Adam L. Cohen, Dennis R. Smalley, Michael S. Lockard, Qui T. Le
  • Publication number: 20090197371
    Abstract: Embodiments of the invention provide methods for packaging integrated circuits and/or other electronic components with electrochemically fabricated structures which include conductive interconnection elements. In some embodiments the electrochemically produced structures are fabricated on substrates that include conductive vias while in other embodiments, the substrates are solid blocks of conductive material, or conductive material containing passages that allow the flow of fluid to maintain desired thermal properties of the packaged electronic components.
    Type: Application
    Filed: January 7, 2009
    Publication date: August 6, 2009
    Inventors: Adam L. Cohen, Vacit Arat, Michael S. Lockard, Christopher R. Folk, Marvin M. Kilgo, III
  • Patent number: 7567089
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of two-part probe elements, socket-able probes and their mounts. Some embodiments are directed to methods for fabricating such probes and mounts. In some embodiments, for example, probes have slide in mounting structures, twist in mounting structures, mounting structures that include compliant elements, and the like.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: July 28, 2009
    Assignee: Microfabrica Inc.
    Inventors: Richard T. Chen, Vacit Arat, Chris Folk, Adam L. Cohen
  • Publication number: 20090176042
    Abstract: Various embodiments of the invention present miniature medical devices that may be formed totally or in part using electrochemical fabrication techniques. Sample medical devices include micro-tweezers or forceps, internally expandable stents, bifurcated or side branch stents, drug eluting stents, micro-valves and pumps, rotary ablation devices, electrical ablation devices (e.g. RF devices), micro-staplers, ultrasound catheters, and fluid filters. In some embodiments devices may be made out of a metal material while in other embodiments they may be made from a material (e.g. a polymer) that is molded from an electrochemically fabricated mold. Structural materials may include gold, platinum, silver, stainless steel, titanium or pyrolytic carbon-coated materials such as nickel, copper, and the like.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 9, 2009
    Inventor: Adam L. Cohen
  • Publication number: 20090176004
    Abstract: Various embodiments of the invention present miniature medical devices that may be formed totally or in part using electrochemical fabrication techniques. Sample medical devices include micro-tweezers or forceps, internally expandable stents, bifurcated or side branch stents, drug eluting stents, micro-valves and pumps, rotary ablation devices, electrical ablation devices (e.g. RF devices), micro-staplers, ultrasound catheters, and fluid filters. In some embodiments devices may be made out of a metal material while in other embodiments they may be made from a material (e.g. a polymer) that is molded from an electrochemically fabricated mold. Structural materials may include gold, platinum, silver, stainless steel, titanium or pyrolytic carbon-coated materials such as nickel, copper, and the like.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 9, 2009
    Inventor: Adam L. Cohen
  • Publication number: 20090165295
    Abstract: Various embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer. In other embodiments, electrochemically fabricated structures are formed on dielectric substrates.
    Type: Application
    Filed: September 18, 2008
    Publication date: July 2, 2009
    Inventors: Adam L. Cohen, Gang Zhang, Fan-Gang Tseng
  • Publication number: 20090145767
    Abstract: Some embodiments of the invention are directed to techniques for electrochemically fabricating multi-layer three-dimensional structures where selective patterning of at least one or more layers occurs via a mask which is formed using data representing cross-sections of the three-dimensional structure which has been modified to place it in a polygonal form which defines only regions of positive area. The regions of positive area are regions where structural material is to be located or regions where structural material is not to be located depending on whether the mask will be used, for example, in selectively depositing a structural material or a sacrificial material. The modified data may take the form of adjacent or slightly overlapped relative narrow rectangular structures where the width of the structures is related to a desired formation resolution. The spacing between centers of adjacent rectangles may be uniform or may be a variable.
    Type: Application
    Filed: September 30, 2008
    Publication date: June 11, 2009
    Inventors: Adam L. Cohen, Jeffrey A. Thompson
  • Publication number: 20090149944
    Abstract: Various embodiments of the invention present miniature medical devices that may be formed totally or in part using electrochemical fabrication techniques. Sample medical devices include micro-tweezers or forceps, internally expandable stents, bifurcated or side branch stents, drug eluting stents, micro-valves and pumps, rotary ablation devices, electrical ablation devices (e.g. RF devices), micro-staplers, ultrasound catheters, and fluid filters. In some embodiments devices may be made out of a metal material while in other embodiments they may be made from a material (e.g. a polymer) that is molded from an electrochemically fabricated mold. Structural materials may include gold, platinum, silver, stainless steel, titanium or pyrolytic carbon-coated materials such as nickel, copper, and the like.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 11, 2009
    Inventor: Adam L. Cohen
  • Publication number: 20090139869
    Abstract: Various embodiments of the invention present techniques for forming structures via a combined electrochemical fabrication process and a thermal spraying process or powder deposition processes. In a first set of embodiments, selective deposition occurs via masking processes (e.g. a contact masking process or adhered mask process) and thermal spraying or powder deposition is used in blanket deposition processes to fill in voids left by selective deposition processes. In a second set of embodiments, after selective deposition of a first material, a second material is blanket deposited to fill in the voids, the two depositions are planarized to a common level and then a portion of the first or second materials is removed (e.g. by etching) and a third material is sprayed into the voids left by the etching operation. In both embodiments the resulting depositions are planarized to a desired layer thickness in preparation for adding additional layers.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Inventors: Michael S. Lockard, Adam L. Cohen, Roger W. Barton
  • Publication number: 20090142493
    Abstract: Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
    Type: Application
    Filed: October 29, 2007
    Publication date: June 4, 2009
    Inventors: Gang Zhang, Adam L. Cohen
  • Patent number: 7531077
    Abstract: Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: May 12, 2009
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Patent number: 7527721
    Abstract: Multi-layer structures are electrochemically formed on porous dielectric substrates. In some embodiments, the substrates have at least one surface which is infiltrated with a sacrificial conductive material, all pores (e.g. openings in between dielectric regions of the substrate) or selected pores near the surface of the substrate are opened, and a structural material is deposited to fill at least a portion of the opened pores. If more pores are opened than have been filled or will be filled by the structural material a sacrificial material may be deposited to fill the additional pores. After completing formation of an initial patterned surface on the substrate, a plurality of layers are formed on the substrate (e.g. via electrodeposition operations) and after layer formation is complete, the conductive sacrificial material filling the pores is removed.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: May 5, 2009
    Assignee: Microfabrica Inc.
    Inventors: Pavel B. Lembrikov, Dennis R. Smalley, Adam L. Cohen
  • Patent number: 7524427
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: April 28, 2009
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20090095632
    Abstract: An electrochemical fabrication process produces three-dimensional structures (e.g. components or devices) from a plurality of layers of deposited materials wherein the formation of at least some portions of some layers are produced by operations that remove material or condition selected surfaces of a deposited material. In some embodiments, removal or conditioning operations are varied between layers or between different portions of a layer such that different surface qualities are obtained. In other embodiments varying surface quality may be obtained without varying removal or conditioning operations but instead by relying on differential interaction between removal or conditioning operations and different materials encountered by these operations.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 16, 2009
    Inventors: Adam L. Cohen, Dennis R. Smalley
  • Patent number: 7517462
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: April 14, 2009
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Kieun Kim, Qui T. Le, Gang Zhang, Uri Frodis, Dale S. McPherson, Dennis R. Smalley
  • Publication number: 20090093874
    Abstract: Various embodiments of the invention present miniature medical devices that may be formed totally or in part using electrochemical fabrication techniques. Sample medical devices include micro-tweezers or forceps, internally expandable stents, bifurcated or side branch stents, drug eluting stents, micro-valves and pumps, rotary ablation devices, electrical ablation devices (e.g. RF devices), micro-staplers, ultrasound catheters, and fluid filters. In some embodiments devices may be made out of a metal material while in other embodiments they may be made from a material (e.g. a polymer) that is molded from an electrochemically fabricated mold. Structural materials may include gold, platinum, silver, stainless steel, titanium or pyrolytic carbon-coated materials such as nickel, copper, and the like.
    Type: Application
    Filed: December 15, 2008
    Publication date: April 9, 2009
    Inventor: Adam L. Cohen