Patents by Inventor Aihiko Numata

Aihiko Numata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9160942
    Abstract: A solid-state imaging sensor provided with a plurality of pixels which convert an object image formed by an imaging optical system into an electrical signal, at least a part of the pixels being ranging pixels in which a first and a second photoelectric conversion unit are provided in alignment in a first direction, and in more than half of the ranging pixels in one of peripheral region of the solid-state sensor, the capacitance of the first photoelectric conversion unit being greater than the capacitance of the second photoelectric conversion unit; and in more than half of the ranging pixels in the other of peripheral region of the solid-state sensor, the capacitance of the second photoelectric conversion unit being greater than the capacitance of the first photoelectric conversion unit.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: October 13, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Aihiko Numata
  • Patent number: 9141024
    Abstract: Provided is an exposing device capable of enhancing usage efficiency of light and preventing degradation of imaging property due to a misalignment with a photosensitive drum. The exposing device includes: a laser array including multiple lasers arranged in a predetermined direction; and an optical system guiding light emitted from the each of the multiple lasers to a photosensitive member and focusing the light on the photosensitive member, in which the optical system includes multiple phase modulation elements to decrease an added phase lag in proportion to distance from a center axis that is defined by a principal light beam emitted from the each of the multiple lasers.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: September 22, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Aihiko Numata
  • Publication number: 20150229833
    Abstract: A ranging pixel located in a peripheral region of a solid-state image sensor includes a microlens having a center axis that is shifted relative to a center axis of the ranging pixel, a first waveguide, and a second waveguide. The first waveguide is disposed on a side of the center axis of the ranging pixel that is in a direction opposite to a direction (projection shift direction) obtained by projecting a shift direction of the microlens onto a straight line connecting a center of the first waveguide and a center of the second waveguide, and the second waveguide is disposed on another side of the center axis of the ranging pixel that is in a direction identical to the projection shift direction of the microlens. In addition, at least one of the difference between the refractive indices of the core and the clad and the cross-sectional area of the core is greater in the first waveguide than in the second waveguide.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Inventor: Aihiko Numata
  • Publication number: 20150228687
    Abstract: A ranging pixel located in a peripheral region of a solid-state image sensor includes a microlens having a center axis that is shifted relative to a center axis of the ranging pixel, a first photoelectric conversion unit, and a second photoelectric conversion unit. The first photoelectric conversion unit is disposed on a side of the center axis of the ranging pixel that is in a direction opposite to a direction (projection shift direction) obtained by projecting a shift direction of the microlens onto a straight line connecting a center of the first photoelectric conversion unit and a center of the second photoelectric conversion unit, and the second photoelectric conversion unit is disposed on another side of the center axis of the ranging pixel that is in a direction identical to the projection shift direction of the microlens. In addition, the area of the first photoelectric conversion unit is greater than the area of the second photoelectric conversion unit.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Inventor: Aihiko Numata
  • Publication number: 20150145988
    Abstract: An image processing apparatus includes: a distance calculation unit configured to calculate distance information on the basis of a first image and a second image; and a blur addition unit configured to add a blur to original images based on the first image and the second image, using the distance information calculated by the distance calculation unit and to move a focus plane by a predetermined refocus distance. The blur addition unit adds the blur to a first original image when the refocus distance is equal to or less than a threshold and adds the blur to a second original image, which is an image having an effective F-number greater than an effective F-number of the first original image, when the refocus distance is greater than the threshold.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 28, 2015
    Inventor: Aihiko Numata
  • Patent number: 9040888
    Abstract: A solid state image sensor includes a plurality of pixels, each having a photoelectric conversion section formed in the inside of a substrate and a light-receiving section formed on the side of a light-receiving surface of the substrate. At least a part of the plurality of pixels is ranging pixels. The light-receiving section of each of the ranging pixels is equipped with a guided mode resonant filter adapted to reflect incident light getting into the inside of the light-receiving section at a specific incident angle. The normal line of the guided mode resonant filter is inclined relative to the principal ray of the flux of light entering the guided mode resonant filter.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 26, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Aihiko Numata
  • Publication number: 20150029366
    Abstract: A color filter array includes a plurality of color filters having different center frequencies and each formed of static metal structures and an insulator, a first common electrode formed across the plurality of color filters, a second common electrode opposed to the first common electrode, separated from the static metal structures of the plurality of color filters by the insulator, and formed across the plurality of color filters, and a voltage applying unit configured to apply a voltage between the first common electrode and the second common electrode and change charge density on the surfaces of the static metal structures to thereby simultaneously change the center frequencies of the plurality of color filters.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 29, 2015
    Inventors: Aihiko Numata, Akinari Takagi
  • Publication number: 20150015752
    Abstract: A solid-state image sensor provided with a plurality of pixels which photo-electrically convert an object image formed by an imaging optical system, wherein at least a portion of the plurality of pixels are ranging pixels in which a first photoelectric conversion unit, a barrier region and a second photoelectric conversion unit are provided in alignment in a first direction in this sequence; in the peripheral regions where are distanced from a straight line perpendicular to the first direction and passing through the center of the solid-state image sensor, for more than half of the ranging pixels, the barrier region is situated eccentrically in a direction parallel to the first direction.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventor: Aihiko Numata
  • Publication number: 20150015755
    Abstract: A solid-state imaging sensor provided with a plurality of pixels which convert an object image formed by an imaging optical system into an electrical signal, at least a part of the pixels being ranging pixels in which a first and a second photoelectric conversion unit are provided in alignment in a first direction, and in more than half of the ranging pixels in one of peripheral region of the solid-state sensor, the capacitance of the first photoelectric conversion unit being greater than the capacitance of the second photoelectric conversion unit; and in more than half of the ranging pixels in the other of peripheral region of the solid-state sensor, the capacitance of the second photoelectric conversion unit being greater than the capacitance of the first photoelectric conversion unit.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventor: Aihiko Numata
  • Publication number: 20140192384
    Abstract: Provided is an exposing device capable of enhancing usage efficiency of light and preventing degradation of imaging property due to a misalignment with a photosensitive drum. The exposing device includes: a laser array including multiple lasers arranged in a predetermined direction; and an optical system guiding light emitted from the each of the multiple lasers to a photosensitive member and focusing the light on the photosensitive member, in which the optical system includes multiple phase modulation elements to decrease a phase lag added in proportion to distance from a center axis that is defined by a principal light beam emitted from the each of the multiple lasers.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 10, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Aihiko Numata
  • Publication number: 20140118589
    Abstract: The invention provides a solid-state image sensor including a pixel having a plurality of photoelectric conversion portions and at least one waveguide arranged closer to a side of light incidence than the photoelectric conversion portions, wherein the waveguide has a core member and a cladding member formed of a medium having a refractive index lower than that of the core member, and wherein a layer formed of a medium having a refractive index lower than that of the core member of the waveguide is provided between the photoelectric conversion portions and the waveguide.
    Type: Application
    Filed: October 1, 2013
    Publication date: May 1, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Aihiko Numata
  • Patent number: 8699539
    Abstract: A photonic crystal surface emitting laser, having an n-type cladding layer formed on a substrate; an active layer formed on the n-type cladding layer; an electron blocking layer formed on the active layer and made of a second p-type semiconductor; and a two-dimensional photonic crystal layer that is formed on the electron blocking layer, includes a plurality of layers that are made of a first p-type semiconductor and have different band gaps, and has a high and a low refractive index portion in an in-plane direction. The band gaps of the plurality of layers are smaller than a band gap of the second p-type semiconductor and decrease stepwise or continuously in a lamination direction of the plurality of layers. A third p-type semiconductor having an acceptor doping concentration smaller than that of the second p-type semiconductor is disposed so as to cover a surface of the electron blocking layer.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: April 15, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Aihiko Numata
  • Patent number: 8625649
    Abstract: A surface emitting laser includes a stepped structure having a step between a first region and a second region, the stepped structure provided in an emission area located in an upper portion of the upper mirror. The surface emitting laser includes a light shielding member provided in a third region between the first region and the second region. The light shielding member is not provided in a portion of the first region and a portion of the second region.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: January 7, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Mitsuhiro Ikuta, Aihiko Numata
  • Publication number: 20130343415
    Abstract: A surface emitting laser includes an active layer; a periodic-structure layer including a low-refractive-index medium and a high-refractive-index medium and whose refractive index varies periodically, the periodic-structure layer being provided at a position where light emitted from the active layer couples therewith; and a pair of electrodes from which electricity is supplied to the active layer. The periodic-structure layer is patterned as a square periodic-structure lattice. At least one of the electrodes includes one or more linear electrodes. A direction of each lattice vector of the periodic structure and a longitudinal direction of the linear electrodes are different from each other.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Inventors: Yuichiro Hori, Aihiko Numata
  • Patent number: 8580031
    Abstract: A method of producing a three-dimensional photonic crystal by laminating a layer having a periodic structure, the method including the steps of forming a first structure and a second structure each including the layer having the periodic structure; and bonding a first bonding layer of the first structure and a second bonding layer of the second structure. The first bonding layer is one layer obtained by dividing a layer constituting the three-dimensional photonic crystal at a cross section perpendicular to a lamination direction, and the second bonding layer is the other layer obtained by dividing the layer constituting the three-dimensional photonic crystal at the cross section perpendicular to the lamination direction.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: November 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Aihiko Numata, Hikaru Hoshi, Kenji Tamamori
  • Patent number: 8525282
    Abstract: A solid-state imaging device capable of making reduction in reflection at the interface between a light guide and an incident unit consistent with improvement in condensing efficiency by the light guide is provided. The solid-state imaging device includes a substrate internally including a photoelectric conversion unit, and a condensing unit provided on an optical incident side of the substrate. A configuration satisfying relationships of |N1|<|??×??| and 0.63<N1/(??/??)<1.58 on an end face of the optical incident side of the condensing unit is adopted. Here, N1 is a refractive index of a medium forming a region of the optical incident side of the condensing unit, and ? is a specific permittivity of a medium forming the condensing unit, and ? is a specific permeability of the medium forming the condensing unit.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 3, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Aihiko Numata, Akinari Takagi
  • Publication number: 20120327966
    Abstract: A photonic crystal surface emitting laser, having an n-type cladding layer formed on a substrate; an active layer formed on the n-type cladding layer; an electron blocking layer formed on the active layer and made of a second p-type semiconductor; and a two-dimensional photonic crystal layer that is formed on the electron blocking layer, includes a plurality of layers that are made of a first p-type semiconductor and have different band gaps, and has a high and a low refractive index portion in an in-plane direction. The band gaps of the plurality of layers are smaller than a band gap of the second p-type semiconductor and decrease stepwise or continuously in a lamination direction of the plurality of layers. A third p-type semiconductor having an acceptor doping concentration smaller than that of the second p-type semiconductor is disposed so as to cover a surface of the electron blocking layer.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 27, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Aihiko Numata
  • Publication number: 20120237261
    Abstract: A surface emitting laser includes a stepped structure having a step between a first region and a second region, the stepped structure provided in an emission area located in an upper portion of the upper mirror. The surface emitting laser includes a light shielding member provided in a third region between the first region and the second region. The light shielding member is not provided in a portion of the first region and a portion of the second region.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 20, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Mitsuhiro Ikuta, Aihiko Numata
  • Publication number: 20120119068
    Abstract: A solid state image sensor includes a plurality of pixels, each having a photoelectric conversion section formed in the inside of a substrate and a light-receiving section formed on the side of a light-receiving surface of the substrate. At least a part of the plurality of pixels is ranging pixels. The light-receiving section of each of the ranging pixels is equipped with a guided mode resonant filter adapted to reflect incident light getting into the inside of the light-receiving section at a specific incident angle. The normal line of the guided mode resonant filter is inclined relative to the principal ray of the flux of light entering the guided mode resonant filter.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 17, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Aihiko Numata
  • Publication number: 20110079867
    Abstract: A solid-state imaging device capable of making reduction in reflection at the interface between a light guide and an incident unit consistent with improvement in condensing efficiency by the light guide is provided. The solid-state imaging device includes a substrate internally including a photoelectric conversion unit, and a condensing unit provided on an optical incident side of the substrate. A configuration satisfying relationships of |N1|<|??×??| and 0.63<N1/(??/??)<1.58 on an end face of the optical incident side of the condensing unit is adopted. Here, N1 is a refractive index of a medium forming a region of the optical incident side of the condensing unit, and ? is a specific permittivity of a medium forming the condensing unit, and ? is a specific permeability of the medium forming the condensing unit.
    Type: Application
    Filed: September 29, 2010
    Publication date: April 7, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Aihiko Numata, Akinari Takagi