Patents by Inventor Akihisa Shimomura

Akihisa Shimomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7920611
    Abstract: It is an object to provide a laser apparatus, a laser irradiating method and a manufacturing method of a semiconductor device that make laser energy more stable. To attain the object, a part of laser beam emitted from an oscillator is sampled to generate an electric signal that contains as data energy fluctuation of a laser beam. The electric signal is subjected to signal processing to calculate the frequency, amplitude, and phase of the energy fluctuation of the laser beam.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: April 5, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tamae Takano, Masaki Koyama, Koichiro Tanaka
  • Publication number: 20110076837
    Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 31, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hidekazu MIYAIRI, Akihisa SHIMOMURA, Tatsuya MIZOI, Eiji HIGA, Yoji NAGANO
  • Publication number: 20110053347
    Abstract: It is an object to provide a method for manufacturing an SOI substrate in which reduction in yield can be suppressed while impurity diffusion into a semiconductor film is suppressed. A semiconductor substrate provided with an oxide film is formed by thermally oxidizing the surface of the semiconductor substrate. Plasma is generated under an atmosphere of a gas containing nitrogen atoms and plasma nitridation is performed on part of the oxide film, so that a semiconductor substrate in which an insulating film containing nitrogen atoms is formed over the oxide film is obtained. After bonding the insulating film containing nitrogen atoms and a glass substrate to each other, the semiconductor substrate is split, whereby an SOI substrate in which the insulating film containing nitrogen atoms, the oxide film, a thin semiconductor film are stacked in this order is formed.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 3, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Toru HASEGAWA
  • Publication number: 20110049588
    Abstract: An object of an embodiment of the disclosed invention is to provide a semiconductor device including a photoelectric conversion element with excellent characteristics. An object of an embodiment of the disclosed invention is to provide a semiconductor device including a photoelectric conversion device with excellent characteristic through a simple process. A semiconductor device is provided, which includes a light-transmitting substrate; an insulating layer over the light-transmitting substrate; and a photoelectric conversion element over the insulating layer.
    Type: Application
    Filed: August 17, 2010
    Publication date: March 3, 2011
    Inventors: Atsuo Isobe, Noriko Harima, Noriko Matsumoto, Akihisa Shimomura, Kosei Noda, Kazuko Yamawaki, Yoshiyuki Kurokawa, Takayuki Ikeda, Takashi Hamada
  • Publication number: 20110053343
    Abstract: There are provided a semiconductor device having a structure which can realize not only suppression of a punch-through current but also reuse of a silicon wafer used for bonding, in manufacturing a semiconductor device using an SOI technique, and a manufacturing method thereof. A semiconductor film into which an impurity imparting a conductivity type opposite to that of a source region and a drain region is implanted is formed over a substrate, and a single crystal semiconductor film is bonded to the semiconductor film by an SOI technique to form a stacked semiconductor film. A channel formation region is formed using the stacked semiconductor film, thereby suppressing a punch-through current in a semiconductor device.
    Type: Application
    Filed: November 9, 2010
    Publication date: March 3, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Sho KATO, Fumito ISAKA, Tetsuya KAKEHATA, Hiromichi GODO, Akihisa SHIMOMURA
  • Patent number: 7897476
    Abstract: To provide an SOI substrate with an SOI layer that can be put into practical use, even when a substrate with a low allowable temperature limit such as a glass substrate is used, and to provide a semiconductor substrate formed using such an SOI substrate. In order to bond a single-crystalline semiconductor substrate to a base substrate such as a glass substrate, a silicon oxide film formed by CVD with organic silane as a source material is used as a bonding layer, for example. Accordingly, an SOI substrate with a strong bond portion can be formed even when a substrate with an allowable temperature limit of less than or equal to 700° C. such as a glass substrate is used. A semiconductor layer separated from the single-crystalline semiconductor substrate is irradiated with a laser beam so that the surface of the semiconductor layer is planarized and the crystallinity thereof is recovered.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Eiji Higa, Yoji Nagano, Tatsuya Mizoi, Akihisa Shimomura
  • Publication number: 20110041910
    Abstract: A novel photoelectric conversion device and a manufacturing method thereof are provided. The photoelectric conversion device includes an insulating layer over a light-transmitting base substrate; a single crystal semiconductor layer provided with a plurality of depressions which are filled with the insulating layer; a plurality of first impurity semiconductor layers formed in stripes having one conductivity type and a plurality of second impurity semiconductor layers formed in stripes having a conductivity type which is opposite to the one conductivity type, which are arranged alternately and do not overlap with each other, in a surface layer or over a surface of the single crystal semiconductor layer; first electrodes which are in contact with the first impurity semiconductor layers; and second electrodes which are in contact with the second impurity semiconductor layers.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 24, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Sho KATO, Yoshikazu HIURA
  • Publication number: 20110030901
    Abstract: An object is to provide a uniform semiconductor substrate in which defective bonding is reduced. A further object is to manufacture the semiconductor substrate with a high yield. A first substrate and a second substrate are bonded in a reduced-pressure atmosphere by placing the first substrate at a certain region surrounded by an airtight holding mechanism provided over a support to surround the certain region of a surface of the support; placing the second substrate so as to come to be in contact with the airtight holding mechanism to ensure airtightness of a space surrounded by the support, the airtight holding mechanism, and the second substrate; evacuating the space whose airtightness is secured, thereby reducing an pressure in the space; disposing the second substrate in close contact with the first substrate using difference between the pressure in the space and outside atmospheric pressure; and performing heat treatment.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Satohiro OKAMOTO
  • Patent number: 7881350
    Abstract: It is an object to provide a laser apparatus, a laser irradiating method and a manufacturing method of a semiconductor device that can perform uniform a process with a laser beam to an object uniformly. The present invention provides a laser apparatus comprising an optical system for sampling a part of a laser beam emitted from an oscillator, a sensor for generating an electric signal including fluctuation in energy of the laser beam as a data from the part of the laser beam, a means for performing signal processing to the electrical signal to grasp a state of the fluctuation in energy of the laser beam, and controlling a relative speed of an beam spot of the laser beam to an object in order to change in phase with the fluctuation in energy of the laser beam.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: February 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tamae Takano, Masaki Koyama
  • Publication number: 20110014780
    Abstract: A layer including a semiconductor film is formed over a glass substrate and is heated. A thermal expansion coefficient of the glass substrate is greater than 6×10?7/° C. and less than or equal to 38×10?7/° C. The heated layer including the semiconductor film is irradiated with a pulsed ultraviolet laser beam having a width of less than or equal to 100 ?m, a ratio of width to length of 1:500 or more, and a full width at half maximum of the laser beam profile of less than or equal to 50 ?M, so that a crystalline semiconductor film is formed. As the layer including the semiconductor film formed over the glass substrate, a layer whose total stress after heating is ?500 N/m to +50 N/m, inclusive is formed.
    Type: Application
    Filed: September 22, 2010
    Publication date: January 20, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Hidekazu MIYAIRI, Yasuhiro JINBO
  • Patent number: 7867907
    Abstract: The present invention provides a method by which a thin film process can be conducted simply and accurately without using resist. Further, the present invention provides a method of manufacturing semiconductor devices at low cost. A first layer is formed over a substrate, a peeling layer is formed over the first layer, the peeling layer is selectively irradiated with a laser beam from the peeling layer side to reduce adhesiveness of a part of the peeling layer. Next, the peeling layer in the part with reduced adhesiveness is removed, and the left portion of the peeling layer is used as a mask to selectively etch the first layer.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Energy laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi, Yasuhiro Jinbo
  • Publication number: 20100330779
    Abstract: A bond substrate is irradiated with accelerated ions to form an embrittled region in the bond substrate; an insulating layer is formed over a surface of the bond substrate or a base substrate; the bond substrate and the base substrate are bonded to each other with the insulating layer interposed therebetween; a region in which the bond substrate and the base substrate are not bonded to each other and which is closed by the bond substrate and the base substrate is formed in parts of the bond substrate and the base substrate; the bond substrate is separated at the embrittled region by heat treatment; and a semiconductor layer is formed over the base substrate.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 30, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Naoki OKUNO, Akihisa SHIMOMURA, Hajime TOKUNAGA
  • Patent number: 7851318
    Abstract: A semiconductor substrate is irradiated with accelerated hydrogen ions, thereby forming a damaged region including a large amount of hydrogen. After a single crystal semiconductor substrate and a supporting substrate are bonded to each other, the semiconductor substrate is heated, so that the single crystal semiconductor substrate is separated in the damaged region. A single crystal semiconductor layer which is separated from the single crystal semiconductor substrate is irradiated with a laser beam. The single crystal semiconductor layer is melted by laser beam irradiation, whereby the single crystal semiconductor layer is recrystallized to recover its crystallinity and to planarized a surface of the single crystal semiconductor layer. After the laser beam irradiation, the single crystal semiconductor layer is heated at a temperature at which the single crystal semiconductor layer is not melted, so that the lifetime of the single crystal semiconductor layer is improved.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: December 14, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Koyama, Fumito Isaka, Akihisa Shimomura, Junpei Momo
  • Patent number: 7842583
    Abstract: A semiconductor substrate is manufactured in which a plurality of single crystal semiconductor layers is fixed to a base substrate having low heat resistance such as a glass substrate with a buffer layer interposed therebetween. A plurality of single crystal semiconductor substrates is prepared, each of which includes a buffer layer and a damaged region which is formed by adding hydrogen ions to each semiconductor substrate and contains a large amount of hydrogen. One or more of these single crystal semiconductor substrates is fixed to a base substrate and irradiated with an electromagnetic wave having a frequency of 300 MHz to 300 GHz, thereby being divided along the damaged region. Fixture of single crystal semiconductor substrates and electromagnetic wave irradiation are repeated to manufacture a semiconductor substrate where a required number of single crystal semiconductor substrates are fixed onto the base substrate.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 30, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoki Tsukamoto, Akihisa Shimomura
  • Patent number: 7842584
    Abstract: There are provided a semiconductor device having a structure which can realize not only suppression of a punch-through current but also reuse of a silicon wafer used for bonding, in manufacturing a semiconductor device using an SOI technique, and a manufacturing method thereof. A semiconductor film into which an impurity imparting a conductivity type opposite to that of a source region and a drain region is implanted is formed over a substrate, and a single crystal semiconductor film is bonded to the semiconductor film by an SOI technique to form a stacked semiconductor film. A channel formation region is formed using the stacked semiconductor film, thereby suppressing a punch-through current in a semiconductor device.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 30, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sho Kato, Fumito Isaka, Tetsuya Kakehata, Hiromichi Godo, Akihisa Shimomura
  • Publication number: 20100291755
    Abstract: An SOI substrate is manufactured by a method in which a first insulating film is formed over a first substrate over which a plurality of first single crystal semiconductor films is formed; the first insulating film is planarized; heat treatment is performed on a single crystal semiconductor substrate attached to the first insulating film; a second single crystal semiconductor film is formed; a third single crystal semiconductor film is formed using the first single crystal semiconductor films and the second single crystal semiconductor films as seed layers; a fragile layer is formed by introducing ions into the third single crystal semiconductor film; a second insulating film is formed over the third single crystal semiconductor film; heat treatment is performed on a second substrate superposed on the second insulating film; and a part of the third single crystal semiconductor film is fixed to the second substrate.
    Type: Application
    Filed: July 28, 2010
    Publication date: November 18, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Fumito ISAKA, Sho KATO, Kosei NEI, Ryu KOMATSU, Tatsuya MIZOI, Akihisa SHIMOMURA
  • Publication number: 20100291754
    Abstract: A semiconductor substrate is irradiated with accelerated hydrogen ions, thereby forming a damaged region including a large amount of hydrogen. After a single crystal semiconductor substrate and a supporting substrate are bonded to each other, the semiconductor substrate is heated, so that the single crystal semiconductor substrate is separated in the damaged region. A single crystal semiconductor layer which is separated from the single crystal semiconductor substrate is irradiated with a laser beam. The single crystal semiconductor layer is melted by laser beam irradiation, whereby the single crystal semiconductor layer is recrystallized to recover its crystallinity and to planarized a surface of the single crystal semiconductor layer. After the laser beam irradiation, the single crystal semiconductor layer is heated at a temperature at which the single crystal semiconductor layer is not melted, so that the lifetime of the single crystal semiconductor layer is improved.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masaki KOYAMA, Fumito ISAKA, Akihisa SHIMOMURA, Junpei MOMO
  • Publication number: 20100275990
    Abstract: To provide a novel photoelectric conversion device and a manufacturing method thereof. Over a base substrate having a light-transmitting property, a light-transmitting insulating layer and a single crystal semiconductor layer over the insulating layer are formed. A plurality of first impurity semiconductor layers each having one conductivity type is provided in a band shape in a surface layer of the single crystal semiconductor layer or on a surface of the single crystal semiconductor layer, and a plurality of second impurity semiconductor layers each having a conductivity type which is opposite to the one conductivity type is provided in a band shape in such a manner that the first impurity semiconductor layers and the second impurity semiconductor layers are alternately provided and do not overlap with each other.
    Type: Application
    Filed: April 27, 2010
    Publication date: November 4, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Fumito ISAKA, Sho KATO
  • Publication number: 20100275989
    Abstract: An object relates to an electrode of a semiconductor device or a method for manufacturing a semiconductor device, which includes a bonding step, and problems are: (1) high resistance of a semiconductor device due to the use of an Al electrode, (2) formation of an alloy by Al and Si, (3) high resistance of a film formed by a sputtering method, and (4) defective bonding in a bonding step which is caused if a bonding surface has a large unevenness. A semiconductor device includes a metal substrate or a substrate provided with a metal film, a copper (Cu) plating film over and bonded to the metal substrate or the metal film by employing a thermocompression bonding method, a barrier film over the Cu plating film, a single crystal silicon film over the barrier film, and an electrode layer over the single crystal silicon film.
    Type: Application
    Filed: April 23, 2010
    Publication date: November 4, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruyuki FUJII, Kohei OHSHIMA, Junya MARUYAMA, Akihisa SHIMOMURA
  • Patent number: 7820524
    Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: October 26, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tatsuya Mizoi, Eiji Higa, Yoji Nagano