Patents by Inventor Akihisa Shimomura

Akihisa Shimomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110275191
    Abstract: A method of forming a semiconductor device is provided, including a step of forming a layer which absorbs light over one face of a first substrate, a step of providing a second substrate over the layer which absorbs light, a step of providing a mask to oppose the other face of the first substrate, and a step of transferring the part of the layer which absorbs light to the second substrate by irradiating the layer which absorbs light with a laser beam through the mask.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 10, 2011
    Inventors: Hidekazu Miyairi, Hironobu Shoji, Akihisa Shimomura, Eiji Higa, Tomoaki Moriwaka, Shunpei Yamazaki
  • Patent number: 8048754
    Abstract: An object is to provide a single crystal semiconductor layer with extremely favorable characteristics without performing CMP treatment or heat treatment at high temperature. Further, an object is to provide a semiconductor substrate (or an SOI substrate) having the above single crystal semiconductor layer. A first single crystal semiconductor layer is formed by a vapor-phase epitaxial growth method on a surface of a second single crystal semiconductor layer over a substrate; the first single crystal semiconductor layer and a base substrate are bonded to each other with an insulating layer interposed therebetween; and the first single crystal semiconductor layer and the second single crystal semiconductor layer are separated from each other at an interface therebetween so as to provide the first single crystal semiconductor layer over the base substrate with the insulating layer interposed therebetween. Thus, an SOI substrate can be manufactured.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: November 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Fumito Isaka, Sho Kato, Takashi Hirose
  • Patent number: 8043935
    Abstract: An object is to manufacture a semiconductor substrate having a single crystal semiconductor layer with favorable characteristics, without requiring CMP treatment and/or heat treatment at high temperature. In addition, another object is to improve productivity of semiconductor substrates. Vapor-phase epitaxial growth is performed by using a first single crystal semiconductor layer provided over a first substrate as a seed layer, whereby a second single crystal semiconductor layer is formed over the first single crystal semiconductor layer, and separation is performed at an interface of the both layers. Thus, the second single crystal semiconductor layer is transferred to the second substrate to provide a semiconductor substrate, and the semiconductor substrate is reused by performing laser light treatment on the seed layer.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Fumito Isaka, Sho Kato, Yu Arita, Akihisa Shimomura
  • Patent number: 8044372
    Abstract: Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura, Mai Akiba
  • Patent number: 8034724
    Abstract: It is an object to provide a method of manufacturing a crystalline silicon device and a semiconductor device in which formation of cracks in a substrate, a base protective film, and a crystalline silicon film can be suppressed. First, a layer including a semiconductor film is formed over a substrate, and is heated. A thermal expansion coefficient of the substrate is 6×10?7/° C. to 38×10?7/° C., preferably 6×10?7/° C. to 31.8×10?7/° C. Next, the layer including the semiconductor film is irradiated with a laser beam to crystallize the semiconductor film so as to form a crystalline semiconductor film. Total stress of the layer including the semiconductor film is ?500 N/m to +50 N/m, preferably ?150 N/m to 0 N/m after the heating step.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi, Fumito Isaka, Yasuhiro Jinbo, Junya Maruyama
  • Patent number: 8030177
    Abstract: An object is to provide a method for manufacturing an SOI substrate including a single crystal silicon film whose plane orientation is (100) and a single crystal silicon film whose plane orientation is (110) with high yield. A first single crystal silicon substrate whose plane orientation is (100) is doped with first ions to form a first embrittlement layer. A second single crystal silicon substrate whose plane orientation is (110) is doped with second ions to selectively form a second embrittlement layer. Only part of the first single crystal silicon substrate is separated along the first embrittlement layer by first heat treatment, thereby forming a first single crystal silicon film. A region of the second single crystal silicon substrate, in which the second embrittlement layer is not formed, is removed. Part of the second single crystal silicon substrate is separated along the second embrittlement layer by second heat treatment, thereby forming a second single crystal silicon film.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 4, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Yasuhiro Jinbo, Naoki Okuno
  • Patent number: 8017508
    Abstract: A layer including a semiconductor film is formed over a glass substrate and is heated. A thermal expansion coefficient of the glass substrate is greater than 6×10?7/° C. and less than or equal to 38×10?7/° C. The heated layer including the semiconductor film is irradiated with a pulsed ultraviolet laser beam having a width of less than or equal to 100 ?m, a ratio of width to length of 1:500 or more, and a full width at half maximum of the laser beam profile of less than or equal to 50 ?m, so that a crystalline semiconductor film is formed. As the layer including the semiconductor film formed over the glass substrate, a layer whose total stress after heating is ?500 N/m to +50 N/m, inclusive is formed.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 13, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi, Yasuhiro Jinbo
  • Publication number: 20110212596
    Abstract: An object of an embodiment of the present invention to be disclosed is to prevent oxygen from being taken in a single crystal semiconductor layer in laser irradiation even when crystallinity of the single crystal semiconductor layer is repaired by irradiation with a laser beam; and to make substantially equal or reduce an oxygen concentration in the semiconductor layer after the laser irradiation comparing before the laser irradiation. A single crystal semiconductor layer which is provided over a base substrate by bonding is irradiated with a laser beam, whereby the crystallinity of the single crystal semiconductor layer is repaired. The laser irradiation is performed under a reducing atmosphere or an inert atmosphere.
    Type: Application
    Filed: May 12, 2011
    Publication date: September 1, 2011
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa SHIMOMURA, Hideto OHNUMA, Junpei MOMO, Shunpei YAMAZAKI
  • Patent number: 8003483
    Abstract: Forming an insulating film on a surface of the single crystal semiconductor substrate, forming a fragile region in the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with an ion beam through the insulating film, forming a bonding layer over the insulating film, bonding a supporting substrate to the single crystal semiconductor substrate by interposing the bonding layer between the supporting substrate and the single crystal semiconductor substrate, dividing the single crystal semiconductor substrate at the fragile region to separate the single crystal semiconductor substrate into a single crystal semiconductor layer attached to the supporting substrate, performing first dry etching treatment on a part of the fragile region remaining on the single crystal semiconductor layer, performing second dry etching treatment on a surface of the single crystal semiconductor layer subjected to the first etching treatment, and irradiating the single crystal semiconductor la
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Shinya Sasagawa, Akihisa Shimomura, Junpei Momo, Motomu Kurata, Taiga Muraoka, Kosei Nei
  • Patent number: 7994021
    Abstract: A method of forming a semiconductor device is provided, including a step of forming a layer which absorbs light over one face of a first substrate, a step of providing a second substrate over the layer which absorbs light, a step of providing a mask to oppose the other face of the first substrate, and a step of transferring the part of the layer which absorbs light to the second substrate by irradiating the layer which absorbs light with a laser beam through the mask.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: August 9, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Hironobu Shoji, Akihisa Shimomura, Eiji Higa, Tomoaki Moriwaka, Shunpei Yamazaki
  • Patent number: 7989316
    Abstract: To provide a method of manufacturing a semiconductor device in which the space between semiconductor films transferred at plural locations is narrowed. A first bonding substrate having first projections is attached to a base substrate. Then, the first bonding substrate is separated at the first projections so that first semiconductor films are formed over the base substrate. Next, a second bonding substrate having second projections is attached to the base substrate so that the second projections are placed in regions different from regions where the first semiconductor films are formed. Subsequently, the second bonding substrate is separated at the second projections so that second semiconductor films are formed over the base substrate. In the second bonding substrate, the width of each second projection in a direction (a depth direction) perpendicular to the second bonding substrate is larger than the film thickness of each first semiconductor film formed first.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Tatsuya Mizoi, Hidekazu Miyairi, Koichiro Tanaka
  • Patent number: 7985604
    Abstract: A photoelectric conversion device having an excellent photoelectric conversion characteristic is provided while effectively utilizing limited resources. A fragile layer is formed in a region at a depth of less than 1000 nm from one surface of a single crystal semiconductor substrate, and a first impurity semiconductor layer, a first electrode, and an insulating layer are formed on the one surface side of the single crystal semiconductor substrate. After bonding the insulating layer to a supporting substrate, the single crystal semiconductor substrate is separated with the fragile layer or its vicinity used as a separation plane, thereby forming a first single crystal semiconductor layer over the supporting substrate.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: July 26, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Fumito Isaka, Sho Kato, Kosei Nei, Ryu Komatsu, Akihisa Shimomura, Koji Dairiki
  • Publication number: 20110136320
    Abstract: To provide an SOI substrate with an SOI layer that can be put into practical use, even when a substrate with a low allowable temperature limit such as a glass substrate is used, and to provide a semiconductor substrate formed using such an SOI substrate. In order to bond a single-crystalline semiconductor substrate to a base substrate such as a glass substrate, a silicon oxide film formed by CVD with organic silane as a source material is used as a bonding layer, for example. Accordingly, an SOL substrate with a strong bond portion can be formed even when a substrate with an allowable temperature limit of less than or equal to 700° C. such as a glass substrate is used. A semiconductor layer separated from the single-crystalline semiconductor substrate is irradiated with a laser beam so that the surface of the semiconductor layer is planarized and the crystallinity thereof is recovered.
    Type: Application
    Filed: February 2, 2011
    Publication date: June 9, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Eiji HIGA, Yoji NAGANO, Tatsuya MIZOI, Akihisa SHIMOMURA
  • Publication number: 20110115046
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Motoki NAKASHIMA
  • Publication number: 20110117708
    Abstract: To suppress an effect of metal contamination caused in manufacturing an SOI substrate. After forming a damaged region by irradiating a semiconductor substrate with hydrogen ions, the semiconductor substrate is bonded to a base substrate. Heat treatment is performed to cleave the semiconductor substrate; thus an SOI substrate is manufactured. Even if metal ions enter the semiconductor substrate together with the hydrogen ions in the step of hydrogen ion irradiation, the effect of metal contamination can be suppressed by the gettering process. Accordingly, the irradiation with hydrogen ions can be performed positively by an ion doping method.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi
  • Patent number: 7943885
    Abstract: By laser beam being slantly incident to the diffractive optics, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the device has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: May 17, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura, Atsuo Isobe
  • Patent number: 7943414
    Abstract: An object of an embodiment of the present invention to be disclosed is to prevent oxygen from being taken in a single crystal semiconductor layer in laser irradiation even when crystallinity of the single crystal semiconductor layer is repaired by irradiation with a laser beam; and to make substantially equal or reduce an oxygen concentration in the semiconductor layer after the laser irradiation comparing before the laser irradiation. A single crystal semiconductor layer which is provided over a base substrate by bonding is irradiated with a laser beam, whereby the crystallinity of the single crystal semiconductor layer is repaired. The laser irradiation is performed under a reducing atmosphere or an inert atmosphere.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 17, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hideto Ohnuma, Junpei Momo, Shunpei Yamazaki
  • Patent number: 7939426
    Abstract: An SOI substrate is manufactured by a method in which a first insulating film is formed over a first substrate over which a plurality of first single crystal semiconductor films is formed; the first insulating film is planarized; heat treatment is performed on a single crystal semiconductor substrate attached to the first insulating film; a second single crystal semiconductor film is formed; a third single crystal semiconductor film is formed using the first single crystal semiconductor films and the second single crystal semiconductor films as seed layers; a fragile layer is formed by introducing ions into the third single crystal semiconductor film; a second insulating film is formed over the third single crystal semiconductor film; heat treatment is performed on a second substrate superposed on the second insulating film; and a part of the third single crystal semiconductor film is fixed to the second substrate.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: May 10, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Fumito Isaka, Sho Kato, Kosei Nei, Ryu Komatsu, Tatsuya Mizoi, Akihisa Shimomura
  • Patent number: 7932164
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: April 26, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Motoki Nakashima
  • Publication number: 20110092050
    Abstract: A first embrittlement layer is formed by doping a first single-crystal semiconductor substrate with a first ion; a second embrittlement layer is formed by doping a second single-crystal semiconductor substrate with a second ion; the first and second single-crystal semiconductor substrates are bonded to each other; the first single-crystal semiconductor film is formed over the second single-crystal semiconductor substrate by a first heat treatment; an insulating substrate is bonded over the first single-crystal semiconductor film; and the first and second single-crystal semiconductor films are formed over the insulating substrate by a second heat treatment. A dose of the first ion is higher than that of the second ion and a temperature of the first heat treatment is lower than that of the second heat treatment.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 21, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Naoki OKUNO, Masaki KOYAMA, Yasuhiro JINBO