Patents by Inventor Akihisa Shimomura

Akihisa Shimomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8703579
    Abstract: A method of forming a semiconductor device is provided, including a step of forming a layer which absorbs light over one face of a first substrate, a step of providing a second substrate over the layer which absorbs light, a step of providing a mask to oppose the other face of the first substrate, and a step of transferring the part of the layer which absorbs light to the second substrate by irradiating the layer which absorbs light with a laser beam through the mask.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: April 22, 2014
    Assignee: Semiconductor Energy Laborator Co., Ltd.
    Inventors: Hidekazu Miyairi, Hironobu Shoji, Akihisa Shimomura, Eiji Higa, Tomoaki Moriwaka, Shunpei Yamazaki
  • Patent number: 8686315
    Abstract: The present invention is characterized in that by laser beam being slantly incident to the convex lens, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the present invention has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura, Atsuo Isobe
  • Patent number: 8623469
    Abstract: Provided are a method of heating a composition which is applicable to a substrate provided with a material having low heat resistance and a method of forming a glass pattern which leads to reduction of cracks. A composition formed over a substrate is irradiated with a laser beam to bake the paste through local heating. Scan with the laser beam is performed so that there can be no difference in the laser beam irradiation period between the middle portion and the perimeter portion of the composition. Specifically, irradiation with the laser beam is performed so that the width of the beam spot overlapping with the composition in the scanning direction is substantially uniform.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: January 7, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi
  • Patent number: 8604545
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 10, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Motoki Nakashima
  • Publication number: 20130320332
    Abstract: A transistor including an oxide semiconductor film, which has stable electric characteristics is provided. A transistor including an oxide semiconductor film, which has excellent on-state characteristics is also provided. A semiconductor device in which an oxide semiconductor film having low resistance is formed and the resistance of a channel region of the oxide semiconductor film is increased. Note that an oxide semiconductor film is subjected to a process for reducing the resistance to have low resistance. The process for reducing the resistance of the oxide semiconductor film may be a laser process or heat treatment at a temperature higher than or equal to 450° C. and lower than or equal to 740° C., for example. A process for increasing the resistance of the channel region of the oxide semiconductor film having low resistance may be performed by plasma oxidation or implantation of oxygen ions, for example.
    Type: Application
    Filed: May 20, 2013
    Publication date: December 5, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Suguru HONDO, Akihisa SHIMOMURA, Masaki KOYAMA, Motomu KURATA, Kazuya HANAOKA, Sho NAGAMATSU, Kosei NEI, Toru HASEGAWA
  • Patent number: 8597965
    Abstract: An object is to provide a method for manufacturing a light-emitting device including a flexible substrate, in which separation is performed without separation at the interface between the light-emitting layer and the electrode. A spacer formed of a light absorbing material which absorbs laser light is formed over a partition of one of substrates, a coloring layer is formed over the other substrate, and the substrates are bonded to each other with the use of a bonding layer. The light-emitting layer and the electrode which are formed over the spacer are irradiated with laser light through the coloring layer, so that at least the bonding layer among the light-emitting layer, the electrode, the coloring layer, and the bonding layer is melted to form a fixed portion where the bonding layer and the spacer are bonded by welding.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kaoru Hatano, Akihiro Chida, Akihisa Shimomura, Shunpei Yamazaki
  • Patent number: 8551828
    Abstract: To suppress an effect of metal contamination caused in manufacturing an SOI substrate. After forming a damaged region by irradiating a semiconductor substrate with hydrogen ions, the semiconductor substrate is bonded to a base substrate. Heat treatment is performed to cleave the semiconductor substrate; thus an SOI substrate is manufactured. Even if metal ions enter the semiconductor substrate together with the hydrogen ions in the step of hydrogen ion irradiation, the effect of metal contamination can be suppressed by the gettering process. Accordingly, the irradiation with hydrogen ions can be performed positively by an ion doping method.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: October 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi
  • Patent number: 8545281
    Abstract: To provide an electroluminescent device in which an element substrate provided with a light-emitting element and a sealing substrate are bonded to each other without causing thermal damage to the light-emitting element and which is formed using an electroluminescent material. A sheet 108 in which layers of at least two different kinds of metals are stacked is formed in a peripheral portion of one or both of the element substrate 102 provided with an EL element 104 and a sealing substrate 106 bonded to the element substrate 102 so as to face each other. Further, the sheet is irradiated with a focused beam, and the irradiation portion of the sheet is heated, whereby at least two kinds of metals are alloyed, and the element substrate and the sealing substrate are bonded to each other by heat generated in the alloying.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Kaoru Hatano
  • Patent number: 8530336
    Abstract: Defects in a semiconductor substrate are reduced. A semiconductor substrate with fewer defects is manufactured with high yield. Further, a semiconductor device is manufactured with high yield. A semiconductor layer is formed over a supporting substrate with an oxide insulating layer interposed therebetween, adhesiveness between the supporting substrate and the oxide insulating layer in an edge portion of the semiconductor layer is increased, an insulating layer over a surface of the semiconductor layer is removed, and the semiconductor layer is irradiated with laser light, so that a planarized semiconductor layer is obtained. For increasing the adhesiveness between the supporting substrate and the oxide insulating layer in the edge portion of the semiconductor layer, laser light irradiation is performed from the surface of the semiconductor layer.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: September 10, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kosei Nei, Akihisa Shimomura
  • Patent number: 8481393
    Abstract: A semiconductor substrate is irradiated with accelerated hydrogen ions, thereby forming a damaged region including a large amount of hydrogen. After a single crystal semiconductor substrate and a supporting substrate are bonded to each other, the semiconductor substrate is heated, so that the single crystal semiconductor substrate is separated in the damaged region. A single crystal semiconductor layer which is separated from the single crystal semiconductor substrate is irradiated with a laser beam. The single crystal semiconductor layer is melted by laser beam irradiation, whereby the single crystal semiconductor layer is recrystallized to recover its crystallinity and to planarized a surface of the single crystal semiconductor layer. After the laser beam irradiation, the single crystal semiconductor layer is heated at a temperature at which the single crystal semiconductor layer is not melted, so that the lifetime of the single crystal semiconductor layer is improved.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: July 9, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Koyama, Fumito Isaka, Akihisa Shimomura, Junpei Momo
  • Patent number: 8435871
    Abstract: To provide a high-performance semiconductor device using an SOI substrate in which a substrate having low heat resistance is used as a base substrate, to provide a high-performance semiconductor device without performing mechanical polishing, and to provide an electronic device using the semiconductor device, planarity of a semiconductor layer is improved and defects in the semiconductor layer are reduced by laser beam irradiation. Accordingly, a high-performance semiconductor device can be provided without performing mechanical polishing. In addition, a semiconductor device is manufactured using a region having the most excellent characteristics in a region irradiated with the laser beam. Specifically, instead of the semiconductor layer in a region which is irradiated with the edge portion of the laser beam, the semiconductor layer in a region which is irradiated with portions of the laser beam except the edge portion is used as a semiconductor element.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 7, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Junpei Momo, Fumito Isaka
  • Patent number: 8431451
    Abstract: A semiconductor substrate is formed into a regular hexagon or a shape similar to the regular hexagon. The semiconductor substrate is bonded to and separated from a large-area substrate. Moreover, layout is designed so that a boundary of bonded semiconductors is located in a region which is removed by etching when patterning is performed by photolithography or the like.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 30, 2013
    Assignee: Semicondutor Energy Laboratory Co., Ltd.
    Inventors: Yasunori Yoshida, Akihisa Shimomura, Yurika Sato
  • Patent number: 8426231
    Abstract: An object of an embodiment of the disclosed invention is to provide a semiconductor device including a photoelectric conversion element with excellent characteristics. An object of an embodiment of the disclosed invention is to provide a semiconductor device including a photoelectric conversion device with excellent characteristic through a simple process. A semiconductor device is provided, which includes a light-transmitting substrate; an insulating layer over the light-transmitting substrate; and a photoelectric conversion element over the insulating layer.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 23, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Noriko Harima, Noriko Matsumoto, Akihisa Shimomura, Kosei Noda, Kazuko Yamawaki, Yoshiyuki Kurokawa, Takayuki Ikeda, Takashi Hamada
  • Patent number: 8420504
    Abstract: There are provided a semiconductor device having a structure which can realize not only suppression of a punch-through current but also reuse of a silicon wafer used for bonding, in manufacturing a semiconductor device using an SOI technique, and a manufacturing method thereof. A semiconductor film into which an impurity imparting a conductivity type opposite to that of a source region and a drain region is implanted is formed over a substrate, and a single crystal semiconductor film is bonded to the semiconductor film by an SOI technique to form a stacked semiconductor film. A channel formation region is formed using the stacked semiconductor film, thereby suppressing a punch-through current in a semiconductor device.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: April 16, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sho Kato, Fumito Isaka, Tetsuya Kakehata, Hiromichi Godo, Akihisa Shimomura
  • Patent number: 8383487
    Abstract: Forming an insulating film on a surface of the single crystal semiconductor substrate, forming a fragile region in the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with an ion beam through the insulating film, forming a bonding layer over the insulating film, bonding a supporting substrate to the single crystal semiconductor substrate by interposing the bonding layer between the supporting substrate and the single crystal semiconductor substrate, dividing the single crystal semiconductor substrate at the fragile region to separate the single crystal semiconductor substrate into a single crystal semiconductor layer attached to the supporting substrate, performing first dry etching treatment on a part of the fragile region remaining on the single crystal semiconductor layer, performing second dry etching treatment on a surface of the single crystal semiconductor layer subjected to the first etching treatment, and irradiating the single crystal semiconductor la
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 26, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Shinya Sasagawa, Akihisa Shimomura, Junpei Momo, Motomu Kurata, Taiga Muraoka, Kosei Nei
  • Patent number: 8377804
    Abstract: To provide a semiconductor substrate in which a semiconductor element having favorable crystallinity and high performance can be formed. A single crystal semiconductor substrate having an embrittlement layer and a base substrate are bonded with an insulating layer interposed therebetween; the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment; a single crystal semiconductor layer is fixed to the base substrate; the single crystal semiconductor layer is irradiated with a laser beam; the single crystal semiconductor layer is in a partially melted state to be recrystallized; and crystal defects are repaired. In addition, the energy density of a laser beam with which the best crystallinity of the single crystal semiconductor layer is obtained is detected by a microwave photoconductivity decay method.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: February 19, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Kosei Nei, Hiroaki Honda, Masaki Koyama, Akihisa Shimomura
  • Publication number: 20130009147
    Abstract: In an oxide semiconductor film formed over an insulating surface, an amorphous region remains in the vicinity of the interface with the base, which is thought to cause a variation in the characteristics of a transistor and the like. A base surface or film touching the oxide semiconductor film is formed of a material having a melting point higher than that of a material used for the oxide semiconductor film. Accordingly, a crystalline region is allowed to exist in the vicinity of the interface with the base surface or film touching the oxide semiconductor film. An insulating metal oxide is used for the base surface or film touching the oxide semiconductor film. The metal oxide used here is an aluminum oxide, gallium oxide, or the like that is a material belonging to the same group as the material of the oxide semiconductor film.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 10, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masaki KOYAMA, Kosei NEI, Akihisa SHIMOMURA, Suguru HONDO, Toru HASEGAWA
  • Patent number: 8349704
    Abstract: A bond substrate is irradiated with accelerated ions to form an embrittled region in the bond substrate; an insulating layer is formed over a surface of the bond substrate or a base substrate; the bond substrate and the base substrate are bonded to each other with the insulating layer interposed therebetween; a region in which the bond substrate and the base substrate are not bonded to each other and which is closed by the bond substrate and the base substrate is formed in parts of the bond substrate and the base substrate; the bond substrate is separated at the embrittled region by heat treatment; and a semiconductor layer is formed over the base substrate.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoki Okuno, Akihisa Shimomura, Hajime Tokunaga
  • Patent number: 8349705
    Abstract: To provide a method of manufacturing a semiconductor device in which the space between semiconductor films transferred at plural locations is narrowed. A first bonding substrate having first projections is attached to a base substrate. Then, the first bonding substrate is separated at the first projections so that first semiconductor films are formed over the base substrate. Next, a second bonding substrate having second projections is attached to the base substrate so that the second projections are placed in regions different from regions where the first semiconductor films are formed. Subsequently, the second bonding substrate is separated at the second projections so that second semiconductor films are formed over the base substrate. In the second bonding substrate, the width of each second projection in a direction (a depth direction) perpendicular to the second bonding substrate is larger than the film thickness of each first semiconductor film formed first.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: January 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Tatsuya Mizoi, Hidekazu Miyairi, Koichiro Tanaka
  • Patent number: 8343847
    Abstract: To prevent, in the case of irradiating a single crystal semiconductor layer with a laser beam, an impurity element from being taken into the single crystal semiconductor layer at the time of laser irradiation.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: January 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Koyama, Junpei Momo, Eiji Higa, Hiroaki Honda, Tamae Moriwaka, Akihisa Shimomura