Patents by Inventor Aleksandar Radic

Aleksandar Radic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10491125
    Abstract: A switched-mode power controller includes a primary side controller circuit configured in a startup mode of operation to generate a fixed switching frequency pulse width modulation (PWM) signal with incrementing duty-ratio value. The PWM signal drives a main-switch that charges an inductive device with stored energy and discharges the stored energy into a capacitor on a secondary side to generate a power controller output voltage. Based on a comparison of the power controller output voltage with a reference voltage, the primary side controller circuit is configured to stop the incrementing of the duty-ratio of the PWM signal and begin a quasi-resonant mode of operation during which the primary side controller circuit reduces a number of valleys detected in one or more off-times of the main-switch in one or more respective main-switch switching periods.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 26, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190356231
    Abstract: A flyback converter includes a primary-side circuit to receive an input voltage, a secondary-side circuit to generate an output voltage, a transformer coupling the primary-side circuit to the secondary-side circuit, a main switch coupled to a primary winding of the transformer, and a converter controller having a primary-side controller in signal communication with the main switch to control an on time and an off time of the main switch and to detect one or more valleys of a resonant waveform developed at the main switch during the off time of the main switch. The primary-side controller is configured to operate in a valley reduction mode of operation upon determining that the output voltage is less than a reference voltage minus a predetermined threshold value. The valley reduction mode of operation includes decrementing, for each switching cycle of the main switch, a number of valleys occurring during that switching cycle.
    Type: Application
    Filed: August 2, 2019
    Publication date: November 21, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 10461626
    Abstract: An active clamp circuit includes an active clamp switch having a drain node and a source node, an active clamp capacitor coupled in a series combination with the active clamp switch, a delay circuit, and an active clamp controller circuit coupled to the active clamp switch and to the delay circuit. The active clamp controller circuit is configured to i) receive an active clamp switch voltage based on a voltage developed across the drain node and the source node of the active clamp switch, ii) enable the active clamp switch based on a voltage amplitude of the active clamp switch voltage, and iii) disable the active clamp switch based on a delay signal generated by the delay circuit.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 29, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 10461627
    Abstract: A power converter controller includes a fractional valley controller configured to determine a target number of valleys of a resonant waveform at a drain node of a main switch, the target number of valleys corresponding to a desired off-time of the main switch, the fractional valley controller modulating an off-time of the main switch between two or more modulated off-times. The target number of valleys corresponds to a non-integer number of valleys of the resonant waveform at the drain node of the main switch. Each of the modulated off-times of the main switch corresponds to an integer number of valleys, and the two or more modulated off-times of the main switch has an average value that corresponds to the desired off-time.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: October 29, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 10454379
    Abstract: The combined voltage regulator and snubber circuit generally has a voltage regulator device in parallel with the energy storage element of the snubber circuit operatively connectable in series with a leakage inductance current path; the leakage inductance being part of a magnetic component utilized in a switch-mode power supply having an input voltage source, controllable semiconductor switches, freewheeling semiconductor switches, feedback controller, reactive energy storage components and a load; the voltage regulator generally providing constant or variable voltage to the gate driver of the controllable semiconductor and/or feedback controller; the snubber circuit generally recycling leakage inductance energy to the input capacitor of a neighboring cell in a multi-cell stacked converter.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 22, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Aleksandar Radic, Seyed-Behzad Mahdavikhah-Mehrabad
  • Patent number: 10439499
    Abstract: A switch-mode power supply controller controls a circuit that includes a flyback-based, switch-mode power supply in the context of an input voltage source, a USB Type-C PD controller and an output load. The switch-mode power supply controller may be configured to estimate input voltage based on a measured magnetizing inductance discharge time. Furthermore, the switch-mode power supply controller may be configured to estimate output voltage based on the measured magnetizing inductance discharge time and the estimated input voltage. Still further, the estimated voltages may be used by the switch-mode power supply controller to limit certain currents and optimize power efficiency. Even further, the estimated and measured value may be employed by the switch-mode power supply controller to estimate and indicate brownout conditions.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 8, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Aleksandar Radic, Seyed-Behzad Mahdavikhah-Mehrabad
  • Patent number: 10418912
    Abstract: A power converter includes an input side to receive an input voltage, and an output side to provide an output voltage, a main switch, a controller, a transformer having a primary winding that couples the main switch to the input side, an active clamp switch coupled to the input side by an active clamp capacitor, and an active clamp controller circuit. The active clamp controller circuit includes a sampling circuit to generate a sampled main switch voltage, a delay circuit to generate a delayed sampled main switch voltage, a voltage comparison circuit, and an active clamp switch control circuit configured to i) enable the active clamp switch based on a first comparison between the sampled main switch voltage and the delayed sampled main switch voltage, and ii) disable the active clamp switch based on a second comparison between the sampled main switch voltage and the delayed sampled main switch voltage.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 17, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190260297
    Abstract: The anti-windup circuit generally has a voltage clamping device in series with a current limiting device operatively connectable to the output current path of a feedback compensator; the feedback compensator being part of a switch-mode power supply (SMPS) having an input voltage source and a load and generating constrained control values required to generate control on-off actions for tight power regulation. The inclusion of the disclosed anti-windup circuit in an SMPS may lead to hardware based overvoltage protection, reduced overall size and faster response to load changes.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190252985
    Abstract: A switched-mode power controller includes a primary side controller circuit configured in a startup mode of operation to generate a fixed switching frequency pulse width modulation (PWM) signal with incrementing duty-ratio value. The PWM signal drives a main-switch that charges an inductive device with stored energy and discharges the stored energy into a capacitor on a secondary side to generate a power controller output voltage. Based on a comparison of the power controller output voltage with a reference voltage, the primary side controller circuit is configured to stop the incrementing of the duty-ratio of the PWM signal and begin a quasi-resonant mode of operation during which the primary side controller circuit reduces a number of valleys detected in one or more off-times of the main-switch in one or more respective main-switch switching periods.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 15, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190252966
    Abstract: A power converter controller includes a fractional valley controller configured to determine a target number of valleys of a resonant waveform at a drain node of a main switch, the target number of valleys corresponding to a desired off-time of the main switch, the fractional valley controller modulating an off-time of the main switch between two or more modulated off-times. The target number of valleys corresponds to a non-integer number of valleys of the resonant waveform at the drain node of the main switch. Each of the modulated off-times of the main switch corresponds to an integer number of valleys, and the two or more modulated off-times of the main switch has an average value that corresponds to the desired off-time.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 15, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 10381936
    Abstract: The flyback converter generally has a capacitive divider operatively connectable to a voltage source for receiving an input voltage, the capacitive divider having a plurality of capacitive devices connected in series from one another; a transformer having a plurality of primary windings inductively coupled to at least one secondary winding, each one of the primary windings of the transformer being connected in parallel to a corresponding one of the capacitive devices of the capacitive divider via a switching device, each of the at least one secondary winding being connected to a forwardly biased and capacitive circuit connectable to an output load; and a controller connected to each one of the switching devices for operating the flyback converter to power the output load with the voltage source.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: August 13, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventors: Sheikh Mohammad Ahsanuzzaman, Seyed-Behzad Mahdavikhah-Mehrabad, Aleksandar Radic, Aleksandar Prodic
  • Publication number: 20190245453
    Abstract: An active clamp circuit includes an active clamp capacitor coupled in series with an active clamp switch and an active clamp controller circuit to receive an active clamp switch current that passes through the active clamp switch and to control the active clamp switch based on the received active clamp switch current. The active clamp controller circuit is configured to enable the active clamp switch based on a first amplitude comparison, the first amplitude comparison being based on the active clamp switch current. The active clamp controller circuit is configured to disable the active clamp switch based on a second amplitude comparison and a third amplitude comparison, the second amplitude comparison and the third amplitude comparison being based on the active clamp switch current.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 8, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190199227
    Abstract: A power converter includes an input side to receive an input voltage, and an output side to provide an output voltage, a main switch, a controller, a transformer having a primary winding that couples the main switch to the input side, an active clamp switch coupled to the input side by an active clamp capacitor, and an active clamp controller circuit. The active clamp controller circuit includes a sampling circuit to generate a sampled main switch voltage, a delay circuit to generate a delayed sampled main switch voltage, a voltage comparison circuit, and an active clamp switch control circuit configured to i) enable the active clamp switch based on a first comparison between the sampled main switch voltage and the delayed sampled main switch voltage, and ii) disable the active clamp switch based on a second comparison between the sampled main switch voltage and the delayed sampled main switch voltage.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 10291134
    Abstract: The anti-windup circuit generally has a voltage clamping device in series with a current limiting device operatively connectable to the output current path of a feedback compensator; the feedback compensator being part of a switch-mode power supply (SMPS) having an input voltage source and a load and generating constrained control values required to generate control on-off actions for tight power regulation. The inclusion of the disclosed anti-windup circuit in an SMPS may lead to hardware based overvoltage protection, reduced overall size and faster response to load changes.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: May 14, 2019
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Publication number: 20190115838
    Abstract: The combined voltage regulator and snubber circuit generally has a voltage regulator device in parallel with the energy storage element of the snubber circuit operatively connectable in series with a leakage inductance current path; the leakage inductance being part of a magnetic component utilized in a switch-mode power supply having an input voltage source, controllable semiconductor switches, freewheeling semiconductor switches, feedback controller, reactive energy storage components and a load; the voltage regulator generally providing constant or variable voltage to the gate driver of the controllable semiconductor and/or feedback controller; the snubber circuit generally recycling leakage inductance energy to the input capacitor of a neighbouring cell in a multi-cell stacked converter.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 18, 2019
    Applicant: Silanna Asia Pte Ltd
    Inventors: Aleksandar Radic, Seyed-Behzad Mahdavikhah-Mehrabad
  • Patent number: 10135344
    Abstract: The combined voltage regulator and snubber circuit generally has a voltage regulator device in parallel with the energy storage element of the snubber circuit operatively connectable in series with a leakage inductance current path; the leakage inductance being part of a magnetic component utilized in a switch-mode power supply having an input voltage source, controllable semiconductor switches, freewheeling semiconductor switches, feedback controller, reactive energy storage components and a load; the voltage regulator generally providing constant or variable voltage to the gate driver of the controllable semiconductor and/or feedback controller; the snubber circuit generally recycling leakage inductance energy to the input capacitor of a neighboring cell in a multi-cell stacked converter.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: November 20, 2018
    Assignee: Silanna Asia Pte Ltd
    Inventors: Aleksandar Radic, Seyed-Behzad Mahdavikhah-Mehrabad
  • Publication number: 20180316270
    Abstract: A switch-mode power supply controller controls a circuit that includes a flyback-based, switch-mode power supply in the context of an input voltage source, a USB Type-C PD controller and an output load. The switch-mode power supply controller may be configured to estimate input voltage based on a measured magnetizing inductance discharge time. Furthermore, the switch-mode power supply controller may be configured to estimate output voltage based on the measured magnetizing inductance discharge time and the estimated input voltage. Still further, the estimated voltages may be used by the switch-mode power supply controller to limit certain currents and optimize power efficiency. Even further, the estimated and measured value may be employed by the switch-mode power supply controller to estimate and indicate brownout conditions.
    Type: Application
    Filed: June 27, 2018
    Publication date: November 1, 2018
    Applicant: Appulse Power Inc.
    Inventors: Aleksandar Radic, Seyed-Behzad Mahdavikhah-Mehrabad
  • Publication number: 20180309369
    Abstract: A combined voltage regulator and snubber circuit generally has a voltage regulator device in parallel with the energy storage element of the snubber circuit operatively connectable in series with a leakage inductance current path; the leakage inductance being part of a magnetic component utilized in a switch-mode power supply having an input voltage source, controllable semiconductor switches, freewheeling semiconductor switches, feedback controller, reactive energy storage components and a load; the voltage regulator generally providing constant or variable voltage to the gate driver of the controllable semiconductor and/or feedback controller.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Applicant: Appulse Power Inc.
    Inventors: Aleksandar Radic, Seyed-Behzad Mahdavikhah-Mehrabad
  • Publication number: 20180269793
    Abstract: The flyback converter generally has a capacitive divider operatively connectable to a voltage source for receiving an input voltage, the capacitive divider having a plurality of capacitive devices connected in series from one another; a transformer having a plurality of primary windings inductively coupled to at least one secondary winding, each one of the primary windings of the transformer being connected in parallel to a corresponding one of the capacitive devices of the capacitive divider via a switching device, each of the at least one secondary winding being connected to a forwardly biased and capacitive circuit connectable to an output load; and a controller connected to each one of the switching devices for operating the flyback converter to power the output load with the voltage source.
    Type: Application
    Filed: November 30, 2015
    Publication date: September 20, 2018
    Applicant: Appulse Power Inc.
    Inventors: Sheikh Mohammad AHSANUZZAMAN, Seyed-Behzad MAHDAVIKHAH -Mehrabad, Aleksandar RADIC, Aleksandar PRODIC
  • Publication number: 20180183339
    Abstract: A combined voltage regulator and snubber circuit generally has a voltage regulator device in parallel with the energy storage element of the snubber circuit operatively connectable in series with a leakage inductance current path; the leakage inductance being part of a magnetic component utilized in a switch-mode power supply having an input voltage source, controllable semiconductor switches, freewheeling semiconductor switches, feedback controller, reactive energy storage components and a load; the voltage regulator generally providing constant or variable voltage to the gate driver of the controllable semiconductor and/or feedback controller.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Inventors: Aleksandar RADIC, Seyed-Behzad MAHDAVIKHAH-MEHRABAD