Patents by Inventor Alex Van Eck Conradie

Alex Van Eck Conradie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190271009
    Abstract: This application describes methods, including non-naturally occurring methods, for biosynthesizing 3-hydroxy-3-methylglutaryl-coA and intermediates thereof, as well as non-naturally occurring hosts for producing 3-hydroxy-3-methylglutaryl-coA. This application also describes methods, including non-naturally occurring methods, for biosynthesizing isoprene and intermediates thereof, as well as non-naturally occurring hosts for producing isoprene.
    Type: Application
    Filed: November 13, 2018
    Publication date: September 5, 2019
    Inventor: Alex Van Eck Conradie
  • Publication number: 20190271014
    Abstract: This document describes materials and methods for, for example, producing 6-hydroxyhexanoic acid using a ?-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a ?-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.
    Type: Application
    Filed: January 24, 2019
    Publication date: September 5, 2019
    Inventors: Alexander Brett Foster, Mariusz Kamionka, Nadia Fatma Kadi, Adriana Leonora Botes, Alex Van Eck Conradie
  • Patent number: 10377899
    Abstract: This document describes biochemical pathways for producing 4-hydroxybutyrate, 4-aminobutyrate, putrescine or 1,4-butanediol by forming one or two terminal functional groups, comprised of amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate or L-glutamate.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 13, 2019
    Assignee: INVISTA NORTH AMERICA S.A R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Publication number: 20190203241
    Abstract: This document describes biochemical pathways that include the production of 3-oxopent-4-enoyl-CoA by condensation of acryloyl-CoA and acetyl-CoA using a ?-ketothiolase with a SER-HIS-HIS catalytic triad. These pathways described herein rely on enzymes such as, inter alia, dehydrogenases, dehydratases and ?-ketothiolases.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 4, 2019
    Inventors: Alex Van Eck CONRADIE, Adriana Leonora BOTES
  • Patent number: 10294496
    Abstract: This document describes biochemical pathways for producing butadiene by forming two vinyl groups in a butadiene synthesis substrate. These pathways described herein rely on enzymes such as, inter alia, a decarboxylating thioesterase, cytochrome P450, or dehydratases for the final enzymatic step.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: May 21, 2019
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 10273518
    Abstract: This document describes biochemical pathways that include the production of 3-oxopent-4-enoyl-CoA by condensation of acryloyl-CoA and acetyl-CoA using a ?-ketothiolase with a SER-HIS-HIS catalytic triad. These pathways described herein rely on enzymes such as, inter alia, dehydrogenases, dehydratases and ?-ketothiolases.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: April 30, 2019
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Publication number: 20190093130
    Abstract: Methods for biosynthesising hydrocarbons from a gaseous substrate in non-naturally occurring acetogens as well as non-naturally occurring acetogens for production of hydrocarbons are provided.
    Type: Application
    Filed: September 27, 2018
    Publication date: March 28, 2019
    Applicant: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Paul S. PEARLMAN, Alex Van Eck CONRADIE, Gary SMITH
  • Patent number: 10233474
    Abstract: This document describes materials and methods for, for example, producing 6-hydroxyhexanoic acid using a ?-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a ?-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 19, 2019
    Assignee: INVISTA North America S.á.r.l.
    Inventors: Alexander Brett Foster, Mariusz Kamionka, Nadia Fatma Kadi, Adriana Leonora Botes, Alex Van Eck Conradie
  • Publication number: 20190078103
    Abstract: This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 14, 2019
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Publication number: 20190062555
    Abstract: This document describes biochemical pathways for producing 4-hydroxybutyrate, 4-aminobutyrate, putrescine or 1,4-butanediol by forming one or two terminal functional groups, comprised of amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate or L-glutamate.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 28, 2019
    Inventors: Alex Van Eck CONRADIE, Adriana Leonora BOTES
  • Patent number: 10196657
    Abstract: This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on enzymes or homologs accepting methyl ester shielded dicarboxylic acid substrates.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: February 5, 2019
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Paul S. Pearlman, Alex Van Eck Conradie, Changlin Chen, Adriana Leonora Botes
  • Publication number: 20190017076
    Abstract: This application describes methods, including non-naturally occurring methods, for biosynthesizing 3-hydroxy-3-methylglutaryl-coA and intermediates thereof, as well as non-naturally occurring hosts for producing 3-hydroxy-3-methylglutaryl-coA. This application also describes methods, including non-naturally occurring methods, for biosynthesizing isoprene and intermediates thereof, as well as non-naturally occurring hosts for producing isoprene.
    Type: Application
    Filed: August 16, 2016
    Publication date: January 17, 2019
    Inventor: Alex Van Eck CONRADIE
  • Patent number: 10174330
    Abstract: This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6; backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: January 8, 2019
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 10167487
    Abstract: This application describes methods, including non-naturally occurring methods, for biosynthesizing 3-hydroxy-3-methylglutaryl-coA and intermediates thereof, as well as non-naturally occurring hosts for producing 3-hydroxy-3-methylglutaryl-coA. This application also describes methods, including non-naturally occurring methods, for biosynthesizing isoprene and intermediates thereof, as well as non-naturally occurring hosts for producing isoprene.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: January 1, 2019
    Assignee: INVISTA North America S.à.r.l.
    Inventor: Alex Van Eck Conradie
  • Publication number: 20180320205
    Abstract: This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the fatty acid synthesis pathway and oxidative cleavage of long chain acyl-[acp] intermediates by a monooxgenase (e.g., cytochrome P450) such as that encoded by BioI from microorganisms such as Bacillus subtillis.
    Type: Application
    Filed: February 1, 2018
    Publication date: November 8, 2018
    Inventors: Paul S. Pearlman, Alex Van Eck Conradie, Changlin Chen, Adriana Leonora Botes
  • Publication number: 20180291401
    Abstract: This application describes methods, including non-naturally occurring methods, for biosynthesizing unsaturated pentahydrocarbons, such as isoprene and intermediates thereof, via the mevalonate pathway, as well as non-naturally occurring hosts for producing isoprene.
    Type: Application
    Filed: August 16, 2016
    Publication date: October 11, 2018
    Inventor: Alex Van Eck CONRADIE
  • Publication number: 20180273987
    Abstract: This document describes biochemical pathways for producing 2,4-pentadienoyl-CoA by forming one or two terminal functional groups, comprised of carboxyl or hydroxyl group, in a C5 backbone substrate such as glutaryl-CoA, glutaryl-[acp] or glutarate methyl ester. 2,4-pentadienoyl-CoA can be enzymatically converted to 1,3-butadiene.
    Type: Application
    Filed: February 23, 2018
    Publication date: September 27, 2018
    Applicant: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Nadia Fatma KADI, Mariusz Stanislaw KAMIONKA, Alexander Brett FOSTER, Alex Van Eck CONRADIE, Adriana Leonora BOTES
  • Patent number: 10072150
    Abstract: This document describes biochemical pathways for producing 4-hydroxybutyrate, 4-aminobutyrate, putrescine or 1,4-butanediol by forming one or two terminal functional groups, comprised of amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate or L-glutamate.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: September 11, 2018
    Assignee: INVISTA North America S.à r.l.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Publication number: 20180216145
    Abstract: This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 9988654
    Abstract: This document describes biochemical pathways for producing 2,3-dehydroadipyl-CoA methyl ester from precursors such as 2-oxoglutarate using one or more of a fatty acid O-methyltransferase, a thioesterase, a CoA-transferase and a CoA ligase, as well as recombinant hosts expressing one or more of such enzymes. 2,3-dehydroadipyl-CoA methyl ester can be enzymatically converted to adipyl-CoA using a trans-2-enoyl-CoA reductase, and a methylesterase, which in turn can be enzymatically converted to adipic acid, 6-aminohexanoate, 6-hydroxyhexanoate, caprolactam, hexamethylenediamine, or 1,6-hexanediol.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: June 5, 2018
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes