Patents by Inventor Alex Van Eck Conradie

Alex Van Eck Conradie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180127788
    Abstract: This document describes biochemical pathways for producing isoprene by forming two vinyl groups in a central precursor produced from isobutyryl-CoA, 3-methyl-2-oxopentanoate, or 4-methyl-2-oxopentanoate as well as recombinant hosts for producing isoprene.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 10, 2018
    Applicant: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Mariusz Kamionka, Jan Modregger, Axel Niebisch, Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 9957535
    Abstract: This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: May 1, 2018
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 9938543
    Abstract: This document describes biochemical pathways for producing 2,4-pentadienoyl-CoA by forming one or two terminal functional groups, comprised of carboxyl or hydroxyl group, in a C5 backbone substrate such as glutaryl-CoA, glutaryl-[acp] or glutarate methyl ester. 2,4-pentadienoyl-CoA can be enzymatically converted to 1,3-butadiene.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: April 10, 2018
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Nadia Fatma Kadi, Mariusz Kamionka, Alexander Brett Foster, Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 9920339
    Abstract: This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as malonyl-CoA or malonyl-[acp].
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: March 20, 2018
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Nadia Fatma Kadi, Mariusz Kamionka, Alexander Brett Foster, Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 9920336
    Abstract: This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the fatty acid synthesis pathway and oxidative cleavage of long chain acyl-[acp] intermediates by a monooxgenase (e.g., cytochrome P450) such as that encoded by BioI from microorganisms such as Bacillus subtillis.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: March 20, 2018
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Paul S. Pearlman, Alex Van Eck Conradie, Changlin Chen, Adriana Leonora Botes
  • Publication number: 20180057843
    Abstract: The document provides methods for biosynthesizing isobutene using one or more isolated enzymes such as one or more of an enoyl-CoA dehydratase, a 2-hydroxyacyl-CoA dehydratase, an isovaleryl-CoA/acyl-CoA dehydrogenase and a mevalonate diphosphate decarboxylase, or using recombinant host cells expressing one or more such enzymes.
    Type: Application
    Filed: August 11, 2017
    Publication date: March 1, 2018
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie
  • Patent number: 9896702
    Abstract: This document describes biochemical pathways for producing 2(E)-heptenedioyl-CoA methyl ester from precursors such as 2-oxo-glutarate, acetyl-CoA, or succinyl-CoA using one or more of a fatty acid O-methyltransferase, a thioesterase, a CoA-transferase, a CoA ligase, as well as recombinant hosts expressing one or more of such enzymes. 2(E)-heptenedioyl-CoA methyl ester can be enzymatically converted to pimeloyl-CoA using a trans-2-enoyl-CoA reductase, and a methylesterase. Pimeloyl-CoA can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: February 20, 2018
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Publication number: 20180023088
    Abstract: This disclosure describes methods for regulating the biosynthesis of pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, 7-aminoheptanol, or 1,7-heptanediol by channeling increased flux through the biosynthesis pathway to obtain an intermediate required for growth of the host microorganism.
    Type: Application
    Filed: July 25, 2017
    Publication date: January 25, 2018
    Inventors: Alex VAN ECK CONRADIE, Achuthanunni CHOKKATHUKALAM, Remi Ako Mbianyor MOMO
  • Patent number: 9862973
    Abstract: This document describes biochemical pathways for producing isoprene by forming two vinyl groups in a central precursor produced from isobutyryl-CoA, 3-methyl-2-oxopentanoate, or 4-methyl-2-oxopentanoate as well as recombinant hosts for producing isoprene.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: January 9, 2018
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie
  • Publication number: 20180002704
    Abstract: The present disclosure relates to methods for more efficiently recycling reduced electron carriers in a hydrogen-oxidizing microorganism with an operable Calvin-Benson cycle; synthetic carbon fixation pathways that recycle reduced electron carriers more efficiently than the Calvin-Benson cycle, such as methods for enzymatically converting carbon dioxide to formate and assimilating the resulting formate into central carbon metabolism; methods for producing biochemical products; and recombinant hosts utilizing one or more synthetic carbon fixation pathways.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 4, 2018
    Inventors: Achuthanunni Chokkathukalam, Alex Van Eck Conradie, Ramdane Haddouche, Satnam Surae, Katherine Louise Tibbles
  • Publication number: 20180002729
    Abstract: This document describes biochemical pathways for producing 7-hydroxyheptanoate methyl ester and heptanoic acid heptyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 7-hydroxyheptanoate methyl esters and heptanoic acid heptyl esters can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 4, 2018
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Ramdane Haddouche
  • Publication number: 20170369914
    Abstract: This document describes biochemical pathways for producing 2-aminopimelate from 2,6-diaminopimelate, and methods for converting 2-aminopimelate to one or more of adipic acid, adipate semialdehyde, caprolactam, 6-aminohexanoic acid, 6-hexanoic acid, hexamethylenediamine, or 1,6-hexanediol by decarboxylating 2-aminopimelate into a six carbon chain aliphatic backbone and enzymatically forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in the backbone.
    Type: Application
    Filed: July 6, 2017
    Publication date: December 28, 2017
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Publication number: 20170369907
    Abstract: This document describes biochemical pathways for producing one or more of pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine and 1,7-heptanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C7 aliphatic backbone substrate produced from succinate semialdehyde or pyruvate. These pathways, metabolic engineering and cultivation strategies described herein rely on the aldol condensation of succinate semialdehyde and pyruvate.
    Type: Application
    Filed: June 29, 2017
    Publication date: December 28, 2017
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Changlin Chen, Paul S. Pearlman
  • Patent number: 9816117
    Abstract: This document describes biochemical pathways for producing 6-hydroxyhexanoate methyl ester and hexanoic acid hexyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase and a monooxygenase, as well as recombinant hosts expressing one or more of such enzymes. 6-hydroxyhexanoate methyl esters and hexanoic acid hexyl ester can be enzymatically converted to adipic acid, adipate semialdehyde, 6-aminohexanoate, 6-hydroxyhexanoate, hexamethylenediamine, and 1,6-hexanediol.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: November 14, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Ramdane Haddouche
  • Publication number: 20170298396
    Abstract: Embodiments of the present invention relate to methods for the biosynthesis of di- or trifunctional C7 alkanes in the presence of isolated enzymes or in the presence of a recombinant host cell expressing those enzymes. The di- or trifunctional C7 alkanes are useful as intermediates in the production of nylon-7, nylon-7,x, nylon-x,7, and polyesters.
    Type: Application
    Filed: March 20, 2017
    Publication date: October 19, 2017
    Inventors: Paul S. Pearlman, Changlin Chen, Adriana L. Botes, Alex Van Eck Conradie, Benjamin D. Herzog
  • Patent number: 9790525
    Abstract: This document describes biochemical pathways for producing pimelic acid, 7-hydroxyheptanoic acid, 7-aminoheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the CoA-dependent elongation enzymes or analog enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: October 17, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 9777302
    Abstract: This document describes biochemical pathways for producing 5-hydroxypentanoate methyl ester and pentanoic acid pentyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 5-hydroxypentanoate methyl esters and pentanoic acid pentyl esters can be enzymatically converted to glutaric acid, 5-aminopentanoate, 5-hydroxypentanoate, cadaverine, or 1,5-pentanediol.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: October 3, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Ramdane Haddouche
  • Patent number: 9777295
    Abstract: The document provides methods for biosynthesizing isobutene using one or more isolated enzymes such as one or more of an enoyl-CoA dehydratase, a 2-hydroxyacyl-CoA dehydratase, an isovaleryl-CoA/acyl-CoA dehydrogenase and a mevalonate diphosphate decarboxylase, or using recombinant host cells expressing one or more such enzymes.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: October 3, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie
  • Patent number: 9758768
    Abstract: This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: September 12, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes
  • Patent number: 9745607
    Abstract: This document describes biochemical pathways for producing 2-aminopimelate from 2,6-diaminopimelate, and methods for converting 2-aminopimelate to one or more of adipic acid, adipate semialdehyde, caprolactam, 6-aminohexanoic acid, 6-hexanoic acid, hexamethylenediamine, or 1,6-hexanediol by decarboxylating 2-aminopimelate into a six carbon chain aliphatic backbone and enzymatically forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in the backbone.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: August 29, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes