Patents by Inventor Ali Khakifirooz

Ali Khakifirooz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10720528
    Abstract: A semiconductor structure is provided that includes a fin stack structure of, from bottom to top, a first semiconductor material fin portion, an insulator fin portion and a second semiconductor material fin portion. The first semiconductor material fin portion can be used as a first device region in which a first conductivity-type device (e.g., n-FET or p-FET) can be formed, while the second semiconductor material fin portion can be used as a second device region in which a second conductivity-type device (e.g., n-FET or p-FET), which is opposite the first conductivity-type device, can be formed.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: July 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10714570
    Abstract: A semiconductor device including a plurality of suspended nanowires and a gate structure present on a channel region portion of the plurality of suspended nanowires. The gate structure has a uniform length extending from an upper surface of the gate structure to the base of the gate structure. The semiconductor device further includes a dielectric spacer having a uniform composition in direct contact with the gate structure. Source and drain regions are present on source and drain region portions of the plurality of suspended nanowires.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: July 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10707332
    Abstract: A semiconductor device is provided that includes a pedestal of an insulating material present over at least one layer of a semiconductor material, and at least one fin structure in contact with the pedestal of the insulating material. Source and drain region structures are present on opposing sides of the at least one fin structure. At least one of the source and drain region structures includes at least two epitaxial material layers. A first epitaxial material layer is in contact with the at least one layer of semiconductor material. A second epitaxial material layer is in contact with the at least one fin structure. The first epitaxial material layer is separated from the at least one fin structure by the second epitaxial material layer. A gate structure present on the at least one fin structure.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: July 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Ali Khakifirooz, Alexander Reznicek, Soon-Cheon Seo
  • Publication number: 20200191746
    Abstract: A semiconductor structure capable of real-time spatial sensing of nanoparticles within a nanofluid is provided. The structure includes an array of gate structures. An interlevel dielectric material surrounds the array of gate structures. A vertical inlet channel is located within a portion of the interlevel dielectric material and on one side of the array of gate structures. A vertical outlet channel is located within another portion of the interlevel dielectric material and on another side of the array of gate structures. A horizontal channel that functions as a back gate is in fluid communication with the vertical inlet and outlet channels, and is located beneath the array of gate structures. A back gate dielectric material portion lines exposed surfaces within the vertical inlet channel, the vertical outlet channel and the horizontal channel.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 18, 2020
    Inventors: Kangguo Cheng, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 10679939
    Abstract: Electrical fuse (eFuse) and resistor structures and methods of manufacture are provided. The method includes forming metal gates having a capping material on a top surface thereof. The method further includes protecting the metal gates and the capping material during an etching process which forms a recess in a dielectric material. The method further includes forming an insulator material and metal material within the recess. The method further includes forming a contact in direct electrical contact with the metal material.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Juntao Li
  • Patent number: 10658513
    Abstract: A finFET structure, and method of forming such structure, in which a germanium enriched nanowire is located in the channel region of the FET, while simultaneously having silicon-germanium fin in the source/drain region of the finFET.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Pouya Hashemi, Ali Khakifirooz, John A. Ott, Alexander Reznicek
  • Publication number: 20200152622
    Abstract: An electrical device including a plurality of fin structures. The plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures. The decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Publication number: 20200135284
    Abstract: An apparatus is described. The apparatus includes a memory chip having logic circuitry to suspend application of an erasure voltage, wherein, respective responses of the erasure voltage to a decision to suspend the application of the erasure voltage depend on where the erasure voltage is along its waveform.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 30, 2020
    Inventors: Justin R. DAYACAP, Shantanu R. RAJWADE, Kyung Jean YOON, Ali KHAKIFIROOZ, David J. PELSTER, Yogesh B. WAKCHAURE, Xin GUO
  • Patent number: 10629743
    Abstract: A semiconductor structure includes a substrate, and a replacement metal gate (RMG) structure is attached to the substrate. The RMG structure includes a lower portion and an upper tapered portion. A source junction is disposed on the substrate and attached to a first low-k spacer portion. A drain junction is disposed on the substrate and attached to a second low-k spacer portion. A first oxide layer is disposed on the source junction, and attached to the first low-k spacer portion. A second oxide layer is disposed on the drain junction, and attached to the second low-k spacer portion. A cap layer is disposed on a top surface layer of the RMG structure and attached to the first oxide layer and the second oxide layer.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: April 21, 2020
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES INC.
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie
  • Patent number: 10629273
    Abstract: An embodiment of a semiconductor apparatus may include technology to determine an error rate associated with a read request for a persistent storage media, compare the determined error rate against a pre-fail threshold, and adjust a read voltage shift direction for the persistent storage media if the determined error rate exceeds the pre-fail threshold. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: April 21, 2020
    Assignee: Intel Corporation
    Inventors: Lei Chen, Xin Guo, Ali Khakifirooz, Aliasgar Madraswala, Yogesh B. Wakchaure
  • Patent number: 10607890
    Abstract: An array of semiconductor fins is formed on a top surface of a substrate. A dielectric material liner is formed on the surfaces of the array of semiconductor fins. A photoresist layer is applied and patterned such that sidewalls of an opening in the photoresist layer are parallel to the lengthwise direction of the semiconductor fins, and are asymmetrically laterally offset from a lengthwise direction passing through the center of mass of a semiconductor fin to be subsequently removed. An angled ion implantation is performed to convert a top portion of dielectric material liner into a compound material portion. The compound material portion is removed selective to the remaining dielectric material liner, and the physically exposed semiconductor fin can be removed by an etch or converted into a dielectric material portion by a conversion process. The dielectric material liner can be removed after removal of the semiconductor fin.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 31, 2020
    Assignee: Tessera, Inc.
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz
  • Patent number: 10605768
    Abstract: A semiconductor structure capable of real-time spatial sensing of nanoparticles within a nanofluid is provided. The structure includes an array of gate structures. An interlevel dielectric material surrounds the array of gate structures. A vertical inlet channel is located within a portion of the interlevel dielectric material and on one side of the array of gate structures. A vertical outlet channel is located within another portion of the interlevel dielectric material and on another side of the array of gate structures. A horizontal channel that functions as a back gate is in fluid communication with the vertical inlet and outlet channels, and is located beneath the array of gate structures. A back gate dielectric material portion lines exposed surfaces within the vertical inlet channel, the vertical outlet channel and the horizontal channel.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: March 31, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 10600870
    Abstract: A semiconductor structure is provided that includes a silicon germanium alloy fin having a second germanium content located on a first portion of a substrate. The structure further includes a laterally graded silicon germanium alloy material portion located on a second portion of the substrate. The laterally graded silicon germanium alloy material portion is spaced apart from the silicon germanium alloy fin and has end portions having the second germanium content and a middle portion located between the end portions that has a first germanium content that is less than the second germanium content.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10593622
    Abstract: Electrical fuse (eFuse) and resistor structures and methods of manufacture are provided. The method includes forming metal gates having a capping material on a top surface thereof. The method further includes protecting the metal gates and the capping material during an etching process which forms a recess in a dielectric material. The method further includes forming an insulator material and metal material within the recess. The method further includes forming a contact in direct electrical contact with the metal material.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: March 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Juntao Li
  • Patent number: 10593663
    Abstract: An electrical device including a plurality of fin structures. The plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures. The decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: March 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Publication number: 20200083374
    Abstract: A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: Kangguo Cheng, Bruce B. Doris, Darsen D. Lu, Ali Khakifirooz, Kern Rim
  • Publication number: 20200058554
    Abstract: An array of semiconductor fins is formed on a top surface of a substrate. A dielectric material liner is formed on the surfaces of the array of semiconductor fins. A photoresist layer is applied and patterned such that sidewalls of an opening in the photoresist layer are parallel to the lengthwise direction of the semiconductor fins, and are asymmetrically laterally offset from a lengthwise direction passing through the center of mass of a semiconductor fin to be subsequently removed. An angled ion implantation is performed to convert a top portion of dielectric material liner into a compound material portion. The compound material portion is removed selective to the remaining dielectric material liner, and the physically exposed semiconductor fin can be removed by an etch or converted into a dielectric material portion by a conversion process. The dielectric material liner can be removed after removal of the semiconductor fin.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz
  • Patent number: 10559690
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: February 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega
  • Patent number: 10546955
    Abstract: A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Darsen D. Lu, Ali Khakifirooz, Kern Rim
  • Publication number: 20190393377
    Abstract: Micro light-emitting diode (LED) displays and assembly apparatuses are described. In an example, a pixel element for a micro-light emitting diode (LED) display panel includes a first color nanowire LED, a second color nanowire LED, the second color different than the first color, and a pair of third color nanowire LEDs, the third color different than the first and second colors. A continuous insulating material layer ius laterally surrounding the first color nanowire LED, the second color nanowire LED, and the pair of third color nanowire LEDs.
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Inventors: Khaled AHMED, Anup PANCHOLI, Ali KHAKIFIROOZ