Patents by Inventor Ali Khakifirooz

Ali Khakifirooz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10510974
    Abstract: Embodiments related to emissive devices for displays are discussed. Some embodiments include light emitting diodes including an electron transport layer core having a tube shape with an inner and an outer sidewall, an emission layer on the inner and outer sidewalls, and a hole transport layer on the emission layer, displays and systems including such light emitting diodes, and methods for fabricating them. Other embodiments include emissive laser devices having an emission layer between a hole transport layer and an electron transport layer and first and second metasurface mirrors adjacent to the hole transport layer and the electron transport layer, respectively, displays and systems including such emissive laser devices, and methods for fabricating them.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 17, 2019
    Assignee: Intel Corporation
    Inventors: Khaled Ahmed, Ali Khakifirooz, Richmond Hicks
  • Publication number: 20190371941
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, REINALDO ARIEL VEGA
  • Publication number: 20190346680
    Abstract: Embodiments of the present disclosure describe light emitting displays having a light emitter layer that includes an array of light emitters and a wafer having a driving circuit coupled with the light emitter layer, computing devices incorporating the light emitting displays, methods for formation of the light emitting displays, and associated configurations. A light emitting display may include a light emitter layer that includes an array of light emitters and a wafer coupled with the light emitter layer, where the wafer includes a driving circuit formed thereon to drive the light emitters. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 30, 2017
    Publication date: November 14, 2019
    Inventors: Khaled AHMED, Ali KHAKIFIROOZ
  • Publication number: 20190341348
    Abstract: Electrical fuse (eFuse) and resistor structures and methods of manufacture are provided. The method includes forming metal gates having a capping material on a top surface thereof. The method further includes protecting the metal gates and the capping material during an etching process which forms a recess in a dielectric material. The method further includes forming an insulator material and metal material within the recess. The method further includes forming a contact in direct electrical contact with the metal material.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Veeraraghavan S. BASKER, Kangguo CHENG, Ali KHAKIFIROOZ, Juntao LI
  • Publication number: 20190341451
    Abstract: A semiconductor device including a plurality of suspended nanowires and a gate structure present on a channel region portion of the plurality of suspended nanowires. The gate structure has a uniform length extending from an upper surface of the gate structure to the base of the gate structure. The semiconductor device further includes a dielectric spacer having a uniform composition in direct contact with the gate structure. Source and drain regions are present on source and drain region portions of the plurality of suspended nanowires.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Publication number: 20190326396
    Abstract: A semiconductor device including a plurality of suspended nanowires and a gate structure present on a channel region portion of the plurality of suspended nanowires. The gate structure has a uniform length extending from an upper surface of the gate structure to the base of the gate structure. The semiconductor device further includes a dielectric spacer having a uniform composition in direct contact with the gate structure. Source and drain regions are present on source and drain region portions of the plurality of suspended nanowires.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10453959
    Abstract: In a method for fabricating a field-effect transistor (FET) structure, forming a fin on a semiconductor substrate. The method further includes forming a gate on a portion of the fin and the semiconductor substrate. The method further includes epitaxially growing a semiconductor material on the fin. The method further includes depositing oxide covering the fin and the epitaxially grown semiconductor material. The method further includes recessing the deposited oxide and the epitaxially grown semiconductor material to expose a top portion of the fin. The method further includes removing the fin. In another embodiment, the method further includes epitaxially growing another fin in a respective trench formed by removing the first set of fins.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: October 22, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek, Dominic J. Schepis
  • Patent number: 10446650
    Abstract: A gate cavity is formed exposing a portion of a silicon fin by removing a sacrificial gate structure that straddles the silicon fin. An epitaxial silicon germanium alloy layer is formed within the gate cavity and on the exposed portion of the silicon fin. Thermal mixing or thermal condensation is performed to convert the exposed portion of the silicon fin into a silicon germanium alloy channel portion which is laterally surrounded by silicon fin portions. A functional gate structure is formed within the gate cavity providing a finFET structure having a silicon germanium alloy channel portion which is laterally surrounded by silicon fin portions.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 15, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Ali Khakifirooz
  • Patent number: 10439101
    Abstract: Micro light-emitting diode (LED) displays and assembly apparatuses are described. In an example, a pixel element for a micro-light emitting diode (LED) display panel includes a first color nanowire LED, a second color nanowire LED, the second color different than the first color, and a pair of third color nanowire LEDs, the third color different than the first and second colors. A continuous insulating material layer ius laterally surrounding the first color nanowire LED, the second color nanowire LED, and the pair of third color nanowire LEDs.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: October 8, 2019
    Assignee: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, Ali Khakifirooz
  • Publication number: 20190296184
    Abstract: Micro light-emitting diode (LED) displays and assembly apparatuses are described. In an example, method of manufacturing a micro-light emitting diode (LED) display panel includes positioning a display backplane substrate in a tank or container, the display backplane substrate having microgrooves therein. The method also includes adding a fluid to the tank or container, the fluid including a suspension of light-emitting diode (LED) pixel elements therein. The method also includes moving the fluid over the display backplane substrate. The method also includes assembling LED pixel elements from the fluid into corresponding ones of the microgrooves.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Inventors: Khaled AHMED, Anup PANCHOLI, Ali KHAKIFIROOZ
  • Publication number: 20190287968
    Abstract: Forming a semiconductor layer on a semiconductor substrate, a top surface of the semiconductor layer above a fin in a second region is higher than a top surface of the semiconductor layer in a first region, etching the semiconductor layer and a mask in the first region to expose a top surface of the semiconductor substrate to form a first stack, and etching the semiconductor layer and the mask in the second region to expose a top surface of the fin to form a second stack, epitaxially growing a semiconductor material on a top surface of the fin not covered by the second stack, recessing the first and second stack to expose a top surface of the semiconductor layer, a portion of the mask remains above the semiconductor layer in the first stack, top surfaces of each of the first and second stacks each are substantially flush with one another.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Inventors: Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek, Charan V.V.S. Surisetty
  • Publication number: 20190287901
    Abstract: Electrical fuse (eFuse) and resistor structures and methods of manufacture are provided. The method includes forming metal gates having a capping material on a top surface thereof. The method further includes protecting the metal gates and the capping material during an etching process which forms a recess in a dielectric material. The method further includes forming an insulator material and metal material within the recess. The method further includes forming a contact in direct electrical contact with the metal material.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Inventors: Veeraraghavan S. BASKER, Kangguo CHENG, Ali KHAKIFIROOZ, Juntao LI
  • Patent number: 10396152
    Abstract: A semiconductor device including a plurality of suspended nanowires and a gate structure present on a channel region portion of the plurality of suspended nanowires. The gate structure has a uniform length extending from an upper surface of the gate structure to the base of the gate structure. The semiconductor device further includes a dielectric spacer having a uniform composition in direct contact with the gate structure. Source and drain regions are present on source and drain region portions of the plurality of suspended nanowires.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10396214
    Abstract: Non-planar semiconductor devices including semiconductor fins or stacked semiconductor nanowires that are electrostatically enhanced are provided. The electrostatic enhancement is achieved in the present application by epitaxially growing a semiconductor material protruding portion on exposed sidewalls of alternating semiconductor material portions of at least one hard mask capped semiconductor-containing fin structure that is formed on a substrate.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10395996
    Abstract: A method of forming a semiconductor structure is provided. The method includes providing a substrate comprising, from bottom to top, a handle substrate, an insulator layer and a germanium-containing layer. Next, hard mask material portions having an opening that exposes a portion of the germanium-containing layer are formed on the substrate. An etch is then performed through the opening to provide an undercut region in the germanium-containing layer. A III-V compound semiconductor material is grown within the undercut region by utilizing an aspect ratio trapping growth process. Next, portions of the III-V compound semiconductor material are removed to provide III-V compound semiconductor material portions located between remaining portions of the germanium-containing layer.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 10396027
    Abstract: Electrical fuse (eFuse) and resistor structures and methods of manufacture are provided. The method includes forming metal gates having a capping material on a top surface thereof. The method further includes protecting the metal gates and the capping material during an etching process which forms a recess in a dielectric material. The method further includes forming an insulator material and metal material within the recess. The method further includes forming a contact in direct electrical contact with the metal material.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Juntao Li
  • Patent number: 10388754
    Abstract: Semiconductor devices and methods for making the same includes conformally forming a first spacer on multiple fins. A second spacer is conformally formed on the first spacer, the second spacer being formed from a different material from the first spacer. The fins are etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched fins to fill the fin cavity.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: August 20, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC.
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie, Tenko Yamashita
  • Patent number: 10389519
    Abstract: A method of controlling transistors includes receiving a control signal, and controlling the top and bottom gate biases of the transistors according to the control signal to normalize or randomize power drawn as observed outside of a core. A device for controlling transistors includes a core performing computational instructions, and a bias circuit receiving a control signal, the bias circuit controlling the top and bottom gate biases of the transistors according to the control signal to normalize or randomize power drawn as observed outside of the core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 20, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Shawn P. Fetterolf, Ali Khakifirooz
  • Patent number: 10388814
    Abstract: Photovoltaic devices including direct gap III-V absorber materials and operatively associated back structures enhance efficiency by enabling photon recycling. The back structures of the photovoltaic devices include wide bandgap III-V layers, highly doped (In)GaAs layers, patterned oxide layers and metal reflectors that directly contact the highly doped (In)GaAs layers through vias formed in the back structures. Localized ohmic contacts are formed in the back structures of the devices.
    Type: Grant
    Filed: June 10, 2017
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20190252548
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Application
    Filed: August 9, 2017
    Publication date: August 15, 2019
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega