Patents by Inventor Alireza Rezania

Alireza Rezania has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230016422
    Abstract: Provided herein are cells engineered to have improved protection against natural killer cell killing. The cells are engineered to comprise an insertion of a polynucleotide encoding SERPINB9. Also provided herein are methods of making the engineered cells and therapeutic uses of the engineered cells. The engineered cells can also comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor. The engineered cells can be stem cells and the engineered stem cells can be differentiated into various lineages having protection against NK cell killing.
    Type: Application
    Filed: June 1, 2022
    Publication date: January 19, 2023
    Applicant: CRISPR THERAPEUTICS AG
    Inventors: Valentin SLUCH, Danielle SWAIN, Alireza REZANIA
  • Patent number: 11505783
    Abstract: The present invention provides methods to promote the differentiation of pluripotent stem cells and the products related to or resulting from such methods. In particular, the present invention provides an improved method for the formation of pancreatic hormone expressing cells and pancreatic hormone secreting cells. In addition, the present invention also provides methods to promote the differentiation of pluripotent stem cells without the use of a feeder cell layer and the products related to or resulting from such methods. The present invention also provides methods to promote glucose-stimulated insulin secretion in insulin-producing cells derived from pluripotent stem cells.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 22, 2022
    Assignee: Janssen Biotech, Inc.
    Inventor: Alireza Rezania
  • Patent number: 11459372
    Abstract: The present invention relates to, inter alia, an engineered cell (e.g., iPSC, IPS-derived NK, or NK cell) comprising a disrupted B2M gene and an inserted polynucleotide encoding one or more of SERPINB9, a fusion of IL15 and IL15R?, and/or HLA-E. The engineered cell can further comprise a disrupted CIITA gene and an inserted polynucleotide encoding a CAR, wherein the CAR can be an anti-BCMA CAR or an anti-CD30 CAR. The engineered cell may further comprise a disrupted ADAM17 gene, a disrupted FAS gene, a disrupted CISH gene, and/or a disrupted REGNASE-1 gene. Methods for producing the engineered cells are also provided, and therapeutic uses of the engineered cells are also described. Guide RNA sequences targeting described target sequences are also described.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 4, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Valentin Sluch, Alireza Rezania, Jason Sagert
  • Patent number: 11433103
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: September 6, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11434505
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: September 6, 2022
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20220275340
    Abstract: The present invention provides methods to promote the differentiation of pluripotent stem cells. In particular, the present invention provides methods to produce a population of cells, wherein greater than 10% of the cells in the population express markers characteristic of single hormonal pancreatic beta cells.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Applicant: Janssen Biotech, Inc.
    Inventor: Alireza Rezania
  • Publication number: 20220218760
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor and/or survival factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes a survival factor, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor and/or a different survival factor.
    Type: Application
    Filed: December 31, 2021
    Publication date: July 14, 2022
    Inventors: Alireza Rezania, Valentin Sluch
  • Patent number: 11377640
    Abstract: The present invention provides methods to promote the differentiation of pluripotent stem cells. In particular, the present invention provides methods to produce a population of cells, wherein greater than 10% of the cells in the population express markers characteristic of single hormonal pancreatic beta cells.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: July 5, 2022
    Assignee: Janssen Biotech, Inc.
    Inventor: Alireza Rezania
  • Publication number: 20220204940
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor and/or survival factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes a survival factor, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor and/or a different survival factor.
    Type: Application
    Filed: December 31, 2021
    Publication date: June 30, 2022
    Inventors: Alireza Rezania, Valentin Sluch
  • Publication number: 20220204934
    Abstract: The disclosure features methods and compositions for differentiating stem cells into hematopoietic stem and progenitor cells (HSPC) and/or Natural Killer (NK) cells. The methods and compositions described herein are used to differentiate stem or progenitor cells having at least one gene-edit that is maintained in the differentiated cell. Also provided are differentiated cells produced using the methods and compositions described herein for therapeutic applications.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 30, 2022
    Inventors: Viktoriia KYRYCHENKO, Wai Lun LEUNG, Alireza REZANIA, Patrick Claudio OVANDO ROCHE
  • Publication number: 20220169700
    Abstract: The present invention relates to, inter alia, an engineered cell (e.g., iPSC, IPS-derived NK, or NK cell) comprising a disrupted B2M gene and an inserted polynucleotide encoding one or more of SERPINB9, a fusion of IL15 and IL15R?, and/or HLA-E. The engineered cell can further comprise a disrupted CIITA gene and an inserted polynucleotide encoding a CAR, wherein the CAR can be an anti-BCMA CAR or an anti-CD30 CAR. The engineered cell may further comprise a disrupted ADAM17 gene, a disrupted FAS gene, a disrupted CISH gene, and/or a disrupted REGNASE-1 gene. Methods for producing the engineered cells are also provided, and therapeutic uses of the engineered cells are also described. Guide RNA sequences targeting described target sequences are also described.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 2, 2022
    Inventors: Viktoriia KYRYCHENKO, Wai Lun LEUNG, Alireza REZANIA, Valentin SLUCH, Danielle SWAIN, Patrick Claudio OVANDO ROCHE
  • Publication number: 20220169988
    Abstract: The present invention relates to, inter alia, an engineered cell (e.g., iPSC, IPS-derived NK, or NK cell) comprising a disrupted B2M gene and an inserted polynucleotide encoding one or more of SERPINB9, a fusion of IL15 and IL15R?, and/or HLA-E. The engineered cell can further comprise a disrupted CIITA gene and an inserted polynucleotide encoding a CAR, wherein the CAR can be an anti-BCMA CAR or an anti-CD30 CAR. The engineered cell may further comprise a disrupted ADAM17 gene, a disrupted FAS gene, a disrupted CISH gene, and/or a disrupted REGNASE-1 gene. Methods for producing the engineered cells are also provided, and therapeutic uses of the engineered cells are also described. Guide RNA sequences targeting described target sequences are also described.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 2, 2022
    Inventors: Viktoriia KYRYCHENKO, Wai Lun LEUNG, Alireza REZANIA, Valentin SLUCH, Danielle SWAIN, Patrick Claudio OVANDO ROCHE
  • Publication number: 20220064667
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Application
    Filed: November 19, 2021
    Publication date: March 3, 2022
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20220016177
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 20, 2022
    Inventors: Alireza REZANIA, Rebeca RAMOS-ZAYAS
  • Publication number: 20210363548
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 25, 2021
    Inventors: Alireza REZANIA, Rebeca Ramos-Zayas
  • Patent number: 11180776
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: November 23, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Publication number: 20210348188
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating the genetically modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or component or transcriptional regulator of the MHC-I or MHC-II complex, at least one genetic modification that increases the expression of at least one polynucleotide that encodes a tolerogenic factor, and optionally at least one genetic modification that increases or decreases the expression of at least one gene that encodes a survival factor.
    Type: Application
    Filed: April 26, 2021
    Publication date: November 11, 2021
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11116798
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11118196
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas
  • Patent number: 11118195
    Abstract: Genetically modified cells that are compatible with multiple subjects, e.g., universal donor cells, and methods of generating said genetic modified cells are provided herein. The universal donor cells comprise at least one genetic modification within or near at least one gene that encodes a survival factor, wherein the genetic modification comprises an insertion of a polynucleotide encoding a tolerogenic factor. The universal donor cells may further comprise at least one genetic modification within or near a gene that encodes one or more MHC-I or MHC-II human leukocyte antigens or a component or a transcriptional regulator of a MHC-I or MHC-II complex, wherein said genetic modification comprises an insertion of a polynucleotide encoding a second tolerogenic factor.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: CRISPR THERAPEUTICS AG
    Inventors: Alireza Rezania, Rebeca Ramos-Zayas