Patents by Inventor Allen McTeer

Allen McTeer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070037300
    Abstract: Systems and methods for plasma processing of microfeature workpieces are disclosed herein. In one embodiment, a method includes generating a plasma in a chamber while a microfeature workpiece is positioned in the chamber, measuring optical emissions from the plasma, and determining a parameter of the plasma based on the measured optical emissions. The parameter can be an ion density or another parameter of the plasma.
    Type: Application
    Filed: August 11, 2005
    Publication date: February 15, 2007
    Applicant: Micron Technology, Inc.
    Inventors: Shu Qin, Allen McTeer
  • Publication number: 20070012987
    Abstract: Methods are provided for selective formation of oxidation-resistant caps for conductive plugs in semiconductor device fabrication. One embodiment of the present invention forms a sacrificial layer over a recessed polysilicon plug. The sacrificial layer is readily planarized using chemical mechanical planarization to isolate the cap within a recessed via. Then, an immersion plating process is used to replace the atoms of the sacrificial layer with atoms of a desired metal, such as platinum, thereby creating a metal cap isolated within the via. The advantages of planarization to isolate material within recessed via are thus obtained without having to planarize or otherwise etch the desired metal. The cap layer can be further reacted to form a barrier compound prior to forming a capacitor over the plug. Advantageously, the plug structure resists oxidation during fabrication of overlying capacitors that incorporate high dielectric constant materials.
    Type: Application
    Filed: July 18, 2006
    Publication date: January 18, 2007
    Inventors: Allen McTeer, Steven Harshfield
  • Publication number: 20070007506
    Abstract: The invention is related to methods and apparatus for providing a resistance variable memory element with improved data retention and switching characteristics. According to one embodiment of the invention, a resistance variable memory element is provided having at least one silver-selenide layer in between two glass layers, wherein at least one of the glass layers is a chalcogenide glass, preferably having a GexSe100-x composition. According to another embodiment of the invention, a resistance variable memory element is provided having at least one silver-selenide layer in between chalcogenide glass layers and further having a silver layer above at least one of said chalcogenide glass layers and a conductive adhesion layer above said silver layer.
    Type: Application
    Filed: May 31, 2006
    Publication date: January 11, 2007
    Inventors: Kristy Campbell, Jiutao Li, Allen McTeer, John Moore
  • Patent number: 7138290
    Abstract: The invention includes methods of depositing silver onto a metal selenide-comprising surface, and methods of forming a resistance variable device. In one implementation, a method of depositing silver onto a metal selenide-comprising surface includes providing a deposition chamber comprising a sputtering target and a substrate to be depositing upon. The target comprises silver, and the substrate comprises an exposed surface comprising metal selenide. Gaseous cesium is flowed to the target and a bombarding inert sputtering species is flowed to the target effective to sputter negative silver ions from the target. The sputtered negative silver ions are flowed to the exposed metal selenide-comprising surface effective to deposit a continuous and completely covering silver film on the exposed metal selenide of the substrate.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: November 21, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Allen McTeer
  • Publication number: 20060240663
    Abstract: The invention includes methods of depositing silver onto a metal selenide-comprising surface, and methods of forming a resistance variable device. In one implementation, a method of depositing silver onto a metal selenide-comprising surface includes providing a deposition chamber comprising a sputtering target and a substrate to be depositing upon. The target comprises silver, and the substrate comprises an exposed surface comprising metal selenide. Gaseous cesium is flowed to the target and a bombarding inert sputtering species is flowed to the target effective to sputter negative silver ions from the target. The sputtered negative silver ions are flowed to the exposed metal selenide-comprising surface effective to deposit a continuous and completely covering silver film on the exposed metal selenide of the substrate.
    Type: Application
    Filed: June 23, 2006
    Publication date: October 26, 2006
    Inventor: Allen McTeer
  • Publication number: 20060197225
    Abstract: The invention includes an electrically conductive line, methods of forming electrically conductive lines, and methods of reducing titanium silicide agglomeration in the fabrication of titanium silicide over polysilicon transistor gate lines. In one implementation, a method of forming an electrically conductive line includes providing a silicon-comprising layer over a substrate. An electrically conductive layer is formed over the silicon-comprising layer. An MSixNy-comprising layer is formed over the electrically conductive layer, where “x” is from 0 to 3.0, “y” is from 0.5 to 10, and “M” is at least one of Ta, Hf, Mo, and W. An MSiz-comprising layer is formed over the MSixNy-comprising layer, where “z” is from 1 to 3.0. A TiSia-comprising layer is formed over the MSiz-comprising layer, where “a” is from 1 to 3.0.
    Type: Application
    Filed: March 7, 2005
    Publication date: September 7, 2006
    Inventors: Qi Pan, Jiutao Li, Yongjun Hu, Allen McTeer
  • Patent number: 7087919
    Abstract: The invention is related to methods and apparatus for providing a resistance variable memory element with improved data retention and switching characteristics. According to one embodiment of the invention, a resistance variable memory element is provided having at least one silver-selenide layer in between two glass layers, wherein at least one of the glass layers is a chalcogenide glass, preferably having a GexSe100?x composition. According to another embodiment of the invention, a resistance variable memory element is provided having at least one silver-selenide layer in between chalcogenide glass layers and further having a silver layer above at least one of said chalcogenide glass layers and a conductive adhesion layer above said silver layer.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: August 8, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, Jiutao Li, Allen McTeer, John T. Moore
  • Patent number: 7078755
    Abstract: Methods are provided for selective formation of oxidation-resistant caps for conductive plugs in semiconductor device fabrication. One embodiment of the present invention forms a sacrificial layer over a recessed polysilicon plug. The sacrificial layer is readily planarized using chemical mechanical planarization to isolate the cap within a recessed via. Then, an immersion plating process is used to replace the atoms of the sacrificial layer with atoms of a desired metal, such as platinum, thereby creating a metal cap isolated within the via. The advantages of planarization to isolate material within recessed via are thus obtained without having to planarize or otherwise etch the desired metal. The cap layer can be further reacted to form a barrier compound prior to forming a capacitor over the plug. Advantageously, the plug structure resists oxidation during fabrication of overlying capacitors that incorporate high dielectric constant materials.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: July 18, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Allen McTeer, Steven T. Harshfield
  • Patent number: 7061111
    Abstract: A copper interconnect structure is disclosed as comprising a copper layer and an aluminum nitride layer formed over the copper layer. The aluminum nitride layer passivates the copper layer surface and enhances the thermal conductivity of a semiconductor substrate by radiating heat from the substrate as well as from the copper layer.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Allen McTeer
  • Publication number: 20060121726
    Abstract: The invention includes methods of depositing silver onto a metal selenide-comprising surface, and methods of forming a resistance variable device. In one implementation, a method of depositing silver onto a metal selenide-comprising surface includes providing a deposition chamber comprising a sputtering target and a substrate to be depositing upon. The target comprises silver, and the substrate comprises an exposed surface comprising metal selenide. Gaseous cesium is flowed to the target and a bombarding inert sputtering species is flowed to the target effective to sputter negative silver ions from the target. The sputtered negative silver ions are flowed to the exposed metal selenide-comprising surface effective to deposit a continuous and completely covering silver film on the exposed metal selenide of the substrate.
    Type: Application
    Filed: December 3, 2004
    Publication date: June 8, 2006
    Inventor: Allen McTeer
  • Patent number: 7049009
    Abstract: A method of sputter depositing silver selenide and controlling the stoichiometry and nodular defect formations of a sputter deposited silver-selenide film. The method includes depositing silver-selenide using a sputter deposition process at a pressure of about 0.3 mTorr to about 10 mTorr. In accordance with one aspect of the invention, an RF sputter deposition process may be used preferably at pressures of about 2 mTorr to about 3 mTorr. In accordance with another aspect of the invention, a pulse DC sputter deposition process may be used preferably at pressures of about 4 mTorr to about 5 mTorr.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: May 23, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Keith Hampton, Allen McTeer
  • Publication number: 20050103621
    Abstract: Method and apparatus for sputter depositing silver selenide and controlling defect formation in and on a sputter deposited silver selenide film are provided. A method of forming deposited silver selenide comprising both alpha and beta phases is further provided. The methods include depositing silver selenide using sputter powers of less than about 200 W, using sputter power densities of less than about 1 W/cm2, using sputter pressures of less than about 40 mTorr and preferably less than about 10 mTorr, using sputter gasses with molecular weight greater than that of neon, using cooling apparatus having a coolant flow rate at least greater than 2.5 gallons per minute and a coolant temperature less than about 25° C., using a magnetron sputtering system having a magnetron placed a sufficient distance from a silver selenide sputter target so as to maintain a sputter target temperature of less than about 350° C. and preferably below about 250° C.
    Type: Application
    Filed: November 14, 2003
    Publication date: May 19, 2005
    Inventors: Jiutao Li, Allen McTeer
  • Publication number: 20050098428
    Abstract: A method of sputter depositing silver selenide and controlling the stoichiometry and nodular defect formations of a sputter deposited silver-selenide film. The method includes depositing silver-selenide using a sputter deposition process at a pressure of about 0.3 mTorr to about 10 mTorr. In accordance with one aspect of the invention, an RF sputter deposition process may be used preferably at pressures of about 2 mTorr to about 3 mTorr. In accordance with another aspect of the invention, a pulse DC sputter deposition process may be used preferably at pressures of about 4 mTorr to about 5 mTorr.
    Type: Application
    Filed: December 16, 2004
    Publication date: May 12, 2005
    Inventors: Jiutao Li, Keith Hampton, Allen McTeer
  • Patent number: 6890790
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 10, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Patent number: 6858465
    Abstract: A method of forming a programmable conductor memory cell array is disclosed wherein metal and chalcogenide glass are co-sputtered to fill an array of cell vias in a prepared substrate. The prepared substrate is heated above room temperature before the metal and chalcogenide glass film is deposited, and the heating is maintained throughout the deposition. The resulting metal/chalcogenide glass film has good homogeneity, a desired ratio of components, and has a regular surface.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer
  • Publication number: 20050026433
    Abstract: Methods of forming metal-doped chalcogenide layers and devices containing such doped chalcogenide layers include using a plasma to induce diffusion of metal into a chalcogenide layer concurrently with metal deposition. The plasma contains at least one noble gas of low atomic weight, such as neon or helium. The plasma has a sputter yield sufficient to sputter a metal target and a UV component of its emitted spectrum sufficient to induce diffusion of the sputtered metal into the chalcogenide layer. Using such methods, a conductive layer can be formed on the doped chalcogenide layer in situ. In integrated circuit devices, such as non-volatile chalcogenide memory devices, doping of the chalcogenide layer concurrently with metal deposition and formation of a conductive layer in situ with the doping of the chalcogenide layer reduces contamination concerns and physical damage resulting from moving the device substrate from tool to tool, thus facilitating improved device reliability.
    Type: Application
    Filed: June 22, 2004
    Publication date: February 3, 2005
    Inventors: Jiutao Li, Allen McTeer
  • Patent number: 6841478
    Abstract: A multi layered copper bond pad for a semiconductor die which inhibits formation of copper oxide is disclosed. A small dose of titanium is implanted in the copper surface. The implanted titanium layer suppresses the copper oxide growth in the copper bond pad by controlling the concentration of vacancies available to the copper ion transport. An interconnect structure such as a wire bond or a solder ball may be attached to the copper-boron layer to connect the semiconductor die to a lead frame or circuit support structure. In another embodiment, a titanium-aluminum passivation layer for copper surfaces is also disclosed. The titanium-aluminum layer is annealed to form a titanium-aluminum-copper alloy. The anneal may be done in a nitrogen environment to form a titanium-aluminum-copper-nitrogen alloy.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: January 11, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Allen McTeer
  • Patent number: 6825135
    Abstract: A method of forming a programmable conductor memory cell array is disclosed wherein metal and chalcogenide glass are co-sputtered to fill an array of cell vias in a prepared substrate. The prepared substrate is heated above room temperature before the metal and chalcogenide glass film is deposited, and the heating is maintained throughout the deposition. The resulting metal/chalcogenide glass film has good homogeneity, a desired ratio of components, and has a regular surface.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: November 30, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer
  • Publication number: 20040235235
    Abstract: The present invention is related to methods and apparatus that allow a chalcogenide glass such as germanium selenide (GexSe1-x) to be doped with a metal such as silver, copper, or zinc without utilizing an ultraviolet (UV) photodoping step to dope the chalcogenide glass with the metal. The chalcogenide glass doped with the metal can be used to store data in a memory device. Advantageously, the systems and methods co-sputter the metal and the chalcogenide glass and allow for relatively precise and efficient control of a constituent ratio between the doping metal and the chalcogenide glass. Further advantageously, the systems and methods enable the doping of the chalcogenide glass with a relatively high degree of uniformity over the depth of the formed layer of chalcogenide glass and the metal. Also, the systems and methods allow a metal concentration to be varied in a controlled manner along the thin film depth.
    Type: Application
    Filed: June 29, 2004
    Publication date: November 25, 2004
    Inventors: Jiutao Li, Allen McTeer, Gregory Herdt, Trung T. Doan
  • Patent number: 6800504
    Abstract: Methods of forming metal-doped chalcogenide layers and devices containing such doped chalcogenide layers include using a plasma to induce diffusion of metal into a chalcogenide layer concurrently with metal deposition. The plasma contains at least one noble gas of low atomic weight, such as neon or helium. The plasma has a sputter yield sufficient to sputter a metal target and a UV component of its emitted spectrum sufficient to induce diffusion of the sputtered metal into the chalcogenide layer. Using such methods, a conductive layer can be formed on the doped chalcogenide layer in situ. In integrated circuit devices, such as non-volatile chalcogenide memory devices, doping of the chalcogenide layer concurrently with metal deposition and formation of a conductive layer in situ with the doping of the chalcogenide layer reduces contamination concerns and physical damage resulting from moving the device substrate from tool to tool, thus facilitating improved device reliability.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer