Patents by Inventor Anand Chandrashekar

Anand Chandrashekar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901227
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: February 13, 2024
    Assignee: Lam Research Corporation
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20230290639
    Abstract: Methods and apparatuses for forming low resistivity tungsten using tungsten nitride barrier layers are provided herein. Methods involve depositing extremely thin tungsten nitride barrier layers prior to depositing tungsten nucleation and bulk tungsten layers. Methods are applicable for fabricating tungsten word lines in 3D NAND fabrication as well as for fabricating tungsten-containing components of DRAM and logic fabrication. Apparatus included processing stations with multiple charge volumes to pressurize gases in close vicinity to a showerhead of a processing chamber for processing semiconductor substrates.
    Type: Application
    Filed: July 29, 2020
    Publication date: September 14, 2023
    Inventors: Lawrence Schloss, Anand Chandrashekar, Juwen Gao, Stephanie Noelle Sandra Sawant-Goubert, Yu Pan
  • Publication number: 20230130557
    Abstract: Providing herein are methods of delivery of gas reactants to a processing chamber and related apparatus.
    Type: Application
    Filed: March 3, 2021
    Publication date: April 27, 2023
    Inventors: Krishna BIRRU, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Michael BOWES, Yong SUN, Xing ZHANG, Sumit Subhash SINGH
  • Publication number: 20230122846
    Abstract: Provided herein are methods of filling features with metal including inhibition of metal nucleation. Also provided are methods of enhancing inhibition and methods of reducing or eliminating inhibition of metal nucleation.
    Type: Application
    Filed: March 12, 2021
    Publication date: April 20, 2023
    Inventors: Rohit KHARE, Krishna BIRRU, Gang L. LIU, Anand CHANDRASHEKAR, Leonard Wai Fung KHO
  • Publication number: 20230041794
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: June 28, 2022
    Publication date: February 9, 2023
    Inventors: Anand CHANDRASHEKAR, Esther JENG, Raashina Humayun, Michal DANEK, Juwen GAO, Deqi WANG
  • Publication number: 20230002891
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Publication number: 20220415711
    Abstract: Provided herein are methods and apparatuses for controlling uniformity of processing at an edge region of a semiconductor wafer. In some embodiments, the methods include providing a backside inhibition gas as part of a deposition-inhibition-deposition (DID) sequence.
    Type: Application
    Filed: February 17, 2021
    Publication date: December 29, 2022
    Inventors: Gang LIU, Anand CHANDRASHEKAR, Tsung-Han YANG, Michael BOWES, Leonard Wai Fung KHO, Eric H. LENZ
  • Publication number: 20220359280
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to ammonia vapor in a non-plasma process. Process parameters including exposure time, substrate temperature, and chamber pressure can be used to tune the inhibition profile. Also provided are methods of filling multiple adjacent lines with reduced or no line bending. The methods involve selectively inhibiting the tungsten nucleation to reduce sidewall growth during feature fill.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 10, 2022
    Inventors: Tsung-Han YANG, Anand CHANDRASHEKAR, Jasmine LIN
  • Publication number: 20220349048
    Abstract: Methods of mitigating line bending during feature fill include deposition of an amorphous layer and/or an inhibition treatment during fill.
    Type: Application
    Filed: August 18, 2020
    Publication date: November 3, 2022
    Inventors: Anand CHANDRASHEKAR, Lei GUO, Tsung-Han YANG
  • Patent number: 11437269
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to ammonia vapor in a non-plasma process. Process parameters including exposure time, substrate temperature, and chamber pressure can be used to tune the inhibition profile. Also provided are methods of filling multiple adjacent lines with reduced or no line bending. The methods involve selectively inhibiting the tungsten nucleation to reduce sidewall growth during feature fill.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 6, 2022
    Assignee: Novellus Systems, Inc.
    Inventors: Tsung-Han Yang, Anand Chandrashekar, Jasmine Lin
  • Publication number: 20220275504
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Patent number: 11410883
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. In certain embodiments, the substrate can be biased during selective inhibition. Process parameters including bias power, exposure time, plasma power, process pressure and plasma chemistry can be used to tune the inhibition profile. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate/wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 9, 2022
    Assignee: Novellus Systems, Inc.
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Patent number: 11365479
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 21, 2022
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20220181158
    Abstract: Methods of depositing a tungsten nucleation layers that achieve very good step coverage are provided. The methods involve a sequence of alternating pulses of a tungsten-containing precursor and a boron-containing reducing agent, while co-flowing hydrogen (H2) with the boron-containing reducing agent. The H2 flow is stopped prior to the tungsten-containing precursor flow. By co-flowing H2 with the boron-containing reducing agent but not with the tungsten-containing precursor flow, a parasitic CVD component is reduced, resulting in a more self-limiting process. This in turn improves step coverage and conformality of the nucleation layer. Related apparatuses are also provided.
    Type: Application
    Filed: April 7, 2020
    Publication date: June 9, 2022
    Applicant: Lam Research Corporation
    Inventors: Michael Bowes, Tsung-Han Yang, Anand Chandrashekar, Xing Zhang
  • Publication number: 20220172987
    Abstract: Systems and methods for selective inhibition control in semiconductor manufacturing are provided. An example method includes providing a substrate including a feature having one or more feature openings and a feature interior. A nucleation layer is formed on a surface of the feature interior. Based on a differential inhibition profile, a nonconformal bulk layer is selectively formed on a surface of the nucleation layer to leave a region of the nucleation layer covered, and a region of the nucleation layer uncovered by the nonconformal bulk layer. An inhibition layer is selectively formed on the covered and uncovered regions of the nucleation layer. Tungsten is deposited in the feature in accordance with the differential inhibition profile.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 2, 2022
    Inventors: Tsung-Han Yang, Michael Bowes, Gang Liu, Anand Chandrashekar
  • Publication number: 20220115244
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Chiukin Steven LAI, Keren Jacobs KANARIK, Samantha S.H. TAN, Anand CHANDRASHEKAR, Teh-Tien SU, Wenbing YANG, Michael WOOD, Michal DANEK
  • Publication number: 20220102208
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: October 8, 2021
    Publication date: March 31, 2022
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20220020641
    Abstract: Provided herein are methods of depositing low stress and void free metal films in deep features and related apparatus. Embodiments of the methods include treating the sidewalls of the holes to inhibit metal deposition while leaving the feature bottom untreated. In subsequent deposition operations, metal precursor molecules diffuse to the feature bottom for deposition. The process is repeated with subsequent inhibition operations treating the remaining exposed sidewalls. By repeating inhibition and deposition operations, high quality void free fill can be achieved. This allows high temperature, low stress deposition to be performed.
    Type: Application
    Filed: December 5, 2019
    Publication date: January 20, 2022
    Inventors: Anand Chandrashekar, Tsung-Han Yang
  • Publication number: 20210375591
    Abstract: Provided herein are methods and apparatuses for controlling uniformity of processing at an edge region of a semiconductor wafer. In some embodiments, the methods include exposing an edge region to treatment gases such as etch gases and/or inhibition gases. Also provided herein are exclusion ring assemblies including multiple rings that may be implemented to provide control of the processing environment at the edge of the wafer.
    Type: Application
    Filed: April 19, 2019
    Publication date: December 2, 2021
    Inventors: Anand Chandrashekar, Eric H. Lenz, Leonard Wai Fung Kho, Jeffrey Charles Clevenger, In Su Ha
  • Publication number: 20210327754
    Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).
    Type: Application
    Filed: June 25, 2021
    Publication date: October 21, 2021
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang