Patents by Inventor Anand Chandrashekar

Anand Chandrashekar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11365479
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 21, 2022
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20220181158
    Abstract: Methods of depositing a tungsten nucleation layers that achieve very good step coverage are provided. The methods involve a sequence of alternating pulses of a tungsten-containing precursor and a boron-containing reducing agent, while co-flowing hydrogen (H2) with the boron-containing reducing agent. The H2 flow is stopped prior to the tungsten-containing precursor flow. By co-flowing H2 with the boron-containing reducing agent but not with the tungsten-containing precursor flow, a parasitic CVD component is reduced, resulting in a more self-limiting process. This in turn improves step coverage and conformality of the nucleation layer. Related apparatuses are also provided.
    Type: Application
    Filed: April 7, 2020
    Publication date: June 9, 2022
    Applicant: Lam Research Corporation
    Inventors: Michael Bowes, Tsung-Han Yang, Anand Chandrashekar, Xing Zhang
  • Publication number: 20220172987
    Abstract: Systems and methods for selective inhibition control in semiconductor manufacturing are provided. An example method includes providing a substrate including a feature having one or more feature openings and a feature interior. A nucleation layer is formed on a surface of the feature interior. Based on a differential inhibition profile, a nonconformal bulk layer is selectively formed on a surface of the nucleation layer to leave a region of the nucleation layer covered, and a region of the nucleation layer uncovered by the nonconformal bulk layer. An inhibition layer is selectively formed on the covered and uncovered regions of the nucleation layer. Tungsten is deposited in the feature in accordance with the differential inhibition profile.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 2, 2022
    Inventors: Tsung-Han Yang, Michael Bowes, Gang Liu, Anand Chandrashekar
  • Publication number: 20220115244
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Chiukin Steven LAI, Keren Jacobs KANARIK, Samantha S.H. TAN, Anand CHANDRASHEKAR, Teh-Tien SU, Wenbing YANG, Michael WOOD, Michal DANEK
  • Publication number: 20220102208
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: October 8, 2021
    Publication date: March 31, 2022
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20220020641
    Abstract: Provided herein are methods of depositing low stress and void free metal films in deep features and related apparatus. Embodiments of the methods include treating the sidewalls of the holes to inhibit metal deposition while leaving the feature bottom untreated. In subsequent deposition operations, metal precursor molecules diffuse to the feature bottom for deposition. The process is repeated with subsequent inhibition operations treating the remaining exposed sidewalls. By repeating inhibition and deposition operations, high quality void free fill can be achieved. This allows high temperature, low stress deposition to be performed.
    Type: Application
    Filed: December 5, 2019
    Publication date: January 20, 2022
    Inventors: Anand Chandrashekar, Tsung-Han Yang
  • Publication number: 20210375591
    Abstract: Provided herein are methods and apparatuses for controlling uniformity of processing at an edge region of a semiconductor wafer. In some embodiments, the methods include exposing an edge region to treatment gases such as etch gases and/or inhibition gases. Also provided herein are exclusion ring assemblies including multiple rings that may be implemented to provide control of the processing environment at the edge of the wafer.
    Type: Application
    Filed: April 19, 2019
    Publication date: December 2, 2021
    Inventors: Anand Chandrashekar, Eric H. Lenz, Leonard Wai Fung Kho, Jeffrey Charles Clevenger, In Su Ha
  • Publication number: 20210327754
    Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).
    Type: Application
    Filed: June 25, 2021
    Publication date: October 21, 2021
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20210305059
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: June 15, 2021
    Publication date: September 30, 2021
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Publication number: 20210257194
    Abstract: An exhaust system for a substrate processing system includes a radical generator configured to receive a gas mixture including halogen species and to generate halogen radicals, a first pump to pump exhaust gas from an exhaust outlet of a processing chamber, and a first valve configured to selectively fluidly connect an outlet of the radical generator to the first pump downstream from the outlet of the processing chamber.
    Type: Application
    Filed: June 14, 2019
    Publication date: August 19, 2021
    Inventors: Krishna BIRRU, Gang LIU, Leonard KHO, Anand CHANDRASHEKAR, Gishun HSU
  • Patent number: 11075115
    Abstract: Described herein are methods of filling features with tungsten and related systems and apparatus. The methods include inside-out fill techniques as well as conformal deposition in features. Inside-out fill techniques can include selective deposition on etched tungsten layers in features. Conformal and non-conformal etch techniques can be used according to various implementations. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) word lines. Examples of applications include logic and memory contact fill, DRAM buried word line fill, vertically integrated memory gate/word line fill, and 3-D integration with through-silicon vias (TSVs).
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: July 27, 2021
    Assignee: Novellus Systems, Inc.
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Patent number: 11069535
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: July 20, 2021
    Assignee: Lam Research Corporation
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 10977405
    Abstract: Provided herein are systems and methods for optimizing feature fill processes. The feature fill optimization systems and methods may be used to optimize feature fill from a small number of patterned wafer tests. The systems and methods may be used for optimizing enhanced feature fill processes including those that include inhibition and/or etch operations along with deposition operations. Results from experiments may be used to calibrate a feature scale behavioral model. Once calibrated, parameter space may be iteratively explored to optimize the process.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 13, 2021
    Assignee: Lam Research Corporation
    Inventors: Michael Bowes, Atashi Basu, Kapil Sawlani, Dongyao Li, Anand Chandrashekar, David M. Fried, Michal Danek
  • Patent number: 10916434
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: February 9, 2021
    Assignee: Lam Research Corporation
    Inventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek
  • Publication number: 20200347497
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20200286743
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 10760158
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: September 1, 2020
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare, Huatan Qiu
  • Publication number: 20200242209
    Abstract: Provided herein are systems and methods for optimizing feature fill processes. The feature fill optimization systems and methods may be used to optimize feature fill from a small number of patterned wafer tests. The systems and methods may be used for optimizing enhanced feature fill processes including those that include inhibition and/or etch operations along with deposition operations. Results from experiments may be used to calibrate a feature scale behavioral model. Once calibrated, parameter space may be iteratively explored to optimize the process.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventors: Michael Bowes, Atashi Basu, Kapil Sawlani, Dongyao Li, Anand Chandrashekar, David M. Fried, Michal Danek
  • Publication number: 20200185273
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. Pre-inhibition and post-inhibition treatments are used to modulate the inhibition effect, facilitating feature fill using inhibition across a wide process window. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 11, 2020
    Inventors: Anand Chandrashekar, Esther Jeng, Raashina Humayun, Michal Danek, Juwen Gao, Deqi Wang
  • Publication number: 20200185225
    Abstract: Described herein are methods of filling features with tungsten, and related systems and apparatus, involving inhibition of tungsten nucleation. In some embodiments, the methods involve selective inhibition along a feature profile. Methods of selectively inhibiting tungsten nucleation can include exposing the feature to a direct or remote plasma. The methods include performing multi-stage inhibition treatments including intervals between stages. One or more of plasma source power, substrate bias power, or treatment gas flow may be reduced or turned off during an interval. The methods described herein can be used to fill vertical features, such as in tungsten vias, and horizontal features, such as vertical NAND (VNAND) wordlines. The methods may be used for both conformal fill and bottom-up/inside-out fill. Examples of applications include logic and memory contact fill, DRAM buried wordline fill, vertically integrated memory gate and wordline fill, and 3-D integration using through-silicon vias.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 11, 2020
    Inventors: Deqi Wang, Anand Chandrashekar, Raashina Humayun, Michal Danek