Patents by Inventor Anchuan Wang

Anchuan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9034770
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a gas phase etch created from a remote plasma etch. The remote plasma excites a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. Reactants thereby produced etch the patterned heterogeneous structures to remove two separate regions of differing silicon oxide at different etch rates. The methods may be used to remove low density silicon oxide while removing less high density silicon oxide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Seung H. Park, Yunyu Wang, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150132968
    Abstract: A method of etching exposed patterned heterogeneous structures is described and includes a remote plasma etch formed from a reactive precursor. The plasma power is pulsed rather than left on continuously. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents selectively remove one material faster than another. The etch selectivity results from the pulsing of the plasma power to the remote plasma region, which has been found to suppress the number of ionically-charged species that reach the substrate. The etch selectivity may also result from the presence of an ion suppression element positioned between a portion of the remote plasma and the substrate processing region.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: He Ren, Jang-Gyoo Yang, Jonghoon Baek, Anchuan Wang, Soonam Park, Saurabh Garg, Xinglong Chen, Nitin K. Ingle
  • Publication number: 20150129541
    Abstract: Methods of selectively etching aluminum and aluminum layers from the surface of a substrate are described. The etch selectively removes aluminum materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon carbon nitride, silicon oxycarbide and/or silicon nitride. The methods include exposing aluminum materials (e.g. aluminum) to remotely-excited chlorine (Cl2) in a substrate processing region. A remote plasma is used to excite the chlorine and a low electron temperature is maintained in the substrate processing region to achieve high etch selectivity. Aluminum oxidation may be broken through using a chlorine-containing precursor or a bromine-containing precursor excited in a plasma or using no plasma-excitation, respectively.
    Type: Application
    Filed: August 14, 2014
    Publication date: May 14, 2015
    Inventors: Xikun Wang, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150126040
    Abstract: Methods of selectively etching silicon germanium relative to silicon are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the silicon germanium. The plasmas effluents react with exposed surfaces and selectively remove silicon germanium while very slowly removing other exposed materials. Generally speaking, the methods are useful for removing Si(1-X)GeX (including germanium i.e. X=1) faster than Si(1-Y)GeY, for all X>Y. In some embodiments, the silicon germanium etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.
    Type: Application
    Filed: May 5, 2014
    Publication date: May 7, 2015
    Inventors: Mikhail Korolik, Nitin K. Ingle, Anchuan Wang, Jingjing Xu
  • Publication number: 20150126039
    Abstract: Methods of selectively etching silicon relative to silicon germanium are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the silicon. The plasmas effluents react with exposed surfaces and selectively remove silicon while very slowly removing other exposed materials. The methods are useful for removing Si(1-X)GeX faster than Si(1-Y)GeY, for X<Y. In some embodiments, the silicon germanium etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.
    Type: Application
    Filed: May 5, 2014
    Publication date: May 7, 2015
    Inventors: Mikhail Korolik, Nitin K. Ingle, Jingchun Zhang, Anchuan Wang, Jie Liu
  • Patent number: 9023732
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Patent number: 9023734
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconiā„¢ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Jingchun Zhang, Ching-Mei Hsu, Seung Park, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150118857
    Abstract: Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 30, 2015
    Inventors: Jie Liu, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle, Seung Park, Zhijun Chen, Ching-Mei Hsu
  • Patent number: 8999856
    Abstract: A method of selectively etching silicon nitride from a substrate comprising a silicon nitride layer and a silicon oxide layer includes flowing a fluorine-containing gas into a plasma generation region of a substrate processing chamber and applying energy to the fluorine-containing gas to generate a plasma in the plasma generation region. The plasma comprises fluorine radicals and fluorine ions. The method also includes filtering the plasma to provide a reactive gas having a higher concentration of fluorine radicals than fluorine ions and flowing the reactive gas into a gas reaction region of the substrate processing chamber. The method also includes exposing the substrate to the reactive gas in the gas reaction region of the substrate processing chamber. The reactive gas etches the silicon nitride layer at a higher etch rate than the reactive gas etches the silicon oxide layer.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 7, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin Ingle
  • Publication number: 20150079797
    Abstract: A method of etching silicon nitride on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a nitrogen-and-oxygen-containing precursor. Plasma effluents from two remote plasmas are flowed into a substrate processing region where the plasma effluents react with the silicon nitride. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon nitride while very slowly removing silicon, such as polysilicon. The silicon nitride selectivity results partly from the introduction of fluorine-containing precursor and nitrogen-and-oxygen-containing precursor using distinct (but possibly overlapping) plasma pathways which may be in series or in parallel.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Inventors: Zhijun Chen, Zihui Li, Anchuan Wang, Nitin K. Ingle, Shankar Venkataraman
  • Patent number: 8980763
    Abstract: Methods of selectively etching tungsten relative to silicon-containing films (e.g. silicon oxide, silicon carbon nitride and (poly)silicon) as well as tungsten oxide are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten. The plasma effluents react with exposed surfaces and selectively remove tungsten while very slowly removing other exposed materials. Sequential and simultaneous methods are included to remove thin tungsten oxide which may, for example, result from exposure to the atmosphere.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Ching-Mei Hsu, Nitin K. Ingle, Zihui Li, Anchuan Wang
  • Patent number: 8969212
    Abstract: A method of etching exposed patterned heterogeneous structures is described and includes a remote plasma etch formed from a reactive precursor. The plasma power is pulsed rather than left on continuously. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents selectively remove one material faster than another. The etch selectivity results from the pulsing of the plasma power to the remote plasma region, which has been found to suppress the number of ionically-charged species that reach the substrate. The etch selectivity may also result from the presence of an ion suppression element positioned between a portion of the remote plasma and the substrate processing region.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Jang-Gyoo Yang, Jonghoon Baek, Anchuan Wang, Soonam Park, Saurabh Garg, Xinglong Chen, Nitin K. Ingle
  • Patent number: 8956980
    Abstract: A method of etching silicon nitride on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a nitrogen-and-oxygen-containing precursor. Plasma effluents from two remote plasmas are flowed into a substrate processing region where the plasma effluents react with the silicon nitride. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon nitride while very slowly removing silicon, such as polysilicon. The silicon nitride selectivity results partly from the introduction of fluorine-containing precursor and nitrogen-and-oxygen-containing precursor using distinct (but possibly overlapping) plasma pathways which may be in series or in parallel.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 17, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Zihui Li, Anchuan Wang, Nitin K. Ingle, Shankar Venkataraman
  • Patent number: 8951429
    Abstract: Methods of selectively etching tungsten oxide relative to tungsten, silicon oxide, silicon nitride and/or titanium nitride are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor in combination with ammonia (NH3). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten oxide. The plasmas effluents react with exposed surfaces and selectively remove tungsten oxide while very slowly removing other exposed materials. Increasing a flow of ammonia during the process removes a typical skin of tungsten oxide having higher oxidation coordination number first and then selectively etching lower oxidation tungsten oxide. In some embodiments, the tungsten oxide etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 10, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jie Liu, Xikun Wang, Seung Park, Mikhail Korolik, Anchuan Wang, Nitin K. Ingle
  • Patent number: 8921234
    Abstract: Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: December 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jie Liu, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle, Seung Park, Zhijun Chen, Ching-Mei Hsu
  • Publication number: 20140308818
    Abstract: A method of etching silicon oxide from a trench is described which allows more homogeneous etch rates up and down the sides of the trench. One disclosed method includes a sequential introduction of (1) a hydrogen-containing precursor and then (2) a fluorine-containing precursor into a substrate processing region. The temperature of the substrate is low during each of the two steps in order to allow the reaction to proceed and form solid residue by-product. A second disclosed method reverses the order of steps (1) and (2) but still forms solid residue by-product. The solid residue by-product is removed by raising the temperature in a subsequent sublimation step regardless of the order of the two steps.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Inventors: Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20140308816
    Abstract: Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Inventors: Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20140273491
    Abstract: A method of etching exposed silicon-and-carbon-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-carbon-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-carbon-containing material from the exposed silicon-and-carbon-containing material regions while very slowly removing other exposed materials. The silicon-and-carbon-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle, Yunyu Wang, Young Lee
  • Publication number: 20140273489
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Application
    Filed: April 7, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Publication number: 20140273488
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Application
    Filed: April 7, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur