Patents by Inventor Anchuan Wang

Anchuan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140080309
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a gas phase etch created from a remote plasma etch. The remote plasma excites a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. Reactants thereby produced etch the patterned heterogeneous structures to remove two separate regions of differing silicon oxide at different etch rates. The methods may be used to remove low density silicon oxide while removing less high density silicon oxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Seung H. Park, Yunyu Wang, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Patent number: 8642481
    Abstract: A method of etching exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-nitrogen-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-nitrogen-containing material from the exposed silicon-and-nitrogen-containing material regions while very slowly removing other exposed materials. The silicon-and-nitrogen-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: February 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130298942
    Abstract: Methods of removing residual polymer from vertical walls of a patterned dielectric layer are described. The methods involve the use of a gas phase etch to remove the residual polymer without substantially disturbing the patterned dielectric layer. The gas phase etch may be used on a patterned low-k dielectric layer and may maintain the low dielectric constant of the patterned dielectric layer. The gas phase etch may further avoid stressing the patterned low-k dielectric layer by avoiding the use of liquid etchants whose surface tension can upset delicate low-K features. The gas phase etch may further avoid the formation of solid etch by-products which cars also deform the delicate features.
    Type: Application
    Filed: March 8, 2013
    Publication date: November 14, 2013
    Applicant: Applied Materials, Inc.
    Inventors: He Ren, Nitin K. Ingle, Anchuan Wang
  • Patent number: 8541312
    Abstract: A method of suppressing the etch rate for exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. The etch selectivity of silicon relative to silicon nitride and other silicon-and-nitrogen-containing material is increased using the method. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-nitrogen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including nitrogen trifluoride and hydrogen (H2). The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: September 24, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Patent number: 8497211
    Abstract: A method of depositing a phosphosilicate glass (PSG) film on a substrate disposed in a substrate processing chamber includes depositing a first portion of the PSG film over the substrate using a high-density plasma process. Thereafter, a portion of the first portion of the PSG film may be etched back. The etch back process may include flowing a halogen precursor to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the etch back. The method also includes flowing a halogen scavenger to the substrate processing chamber to react with residual halogen in the substrate processing chamber, and exposing the first portion of the PSG film to a phosphorus-containing gas to provide a substantially uniform phosphorus concentration throughout the first portion of the PSG film.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 30, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Young S. Lee, Anchuan Wang, Lan Chia Chan, Shankar Venkataraman
  • Patent number: 8450191
    Abstract: Methods of forming polysilicon layers are described. The methods include forming a high-density plasma from a silicon precursor in a substrate processing region containing the deposition substrate. The described methods produce polycrystalline films at reduced substrate temperature (e.g. <500° C.) relative to prior art techniques. The availability of a bias plasma power adjustment further enables adjustment of conformality of the formed polysilicon layer. When dopants are included in the high density plasma, they may be incorporated into the polysilicon layer in such a way that they do not require a separate activation step.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 28, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xiaolin Chen, Young S. Lee
  • Publication number: 20130089988
    Abstract: Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon.
    Type: Application
    Filed: April 4, 2012
    Publication date: April 11, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130059440
    Abstract: A method of suppressing the etch rate for exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. The etch selectivity of silicon relative to silicon nitride and other silicon-and-nitrogen-containing material is increased using the method. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-nitrogen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including nitrogen trifluoride and hydrogen (H2). The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Application
    Filed: April 18, 2012
    Publication date: March 7, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130052827
    Abstract: A method of suppressing the etch rate for exposed silicon-and-oxygen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. Examples of materials whose selectivity is increased using this technique include silicon nitride and silicon. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-oxygen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including a nitrogen-containing precursor and a hydrogen-containing precursor. The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Application
    Filed: April 18, 2012
    Publication date: February 28, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130045605
    Abstract: A method of etching exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-nitrogen-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-nitrogen-containing material from the exposed silicon-and-nitrogen-containing material regions while very slowly removing other exposed materials. The silicon-and-nitrogen-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Application
    Filed: April 17, 2012
    Publication date: February 21, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130034968
    Abstract: A method of etching exposed silicon-and-carbon-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-carbon-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-carbon-containing material from the exposed silicon-and-carbon-containing material regions while very slowly removing other exposed materials. The silicon-and-carbon-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 7, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle, Yunyu Wang, Young Lee
  • Publication number: 20120325773
    Abstract: A method of depositing a phosphosilicate glass (PSG) film on a substrate disposed in a substrate processing chamber includes depositing a first portion of the PSG film over the substrate using a high-density plasma process. Thereafter, a portion of the first portion of the PSG film may be etched back. The etch back process may include flowing a halogen precursor to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the etch back. The method also includes flowing a halogen scavenger to the substrate processing chamber to react with residual halogen in the substrate processing chamber, and exposing the first portion of the PSG film to a phosphorus-containing gas to provide a substantially uniform phosphorus concentration throughout the first portion of the PSG film.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 27, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Young S. Lee, Anchuan Wang, Lan Chia Chan, Shankar Venkataraman
  • Publication number: 20120238103
    Abstract: A method of selectively etching a metal-containing film from a substrate comprising a metal-containing layer and a silicon oxide layer includes flowing a fluorine-containing gas into a plasma generation region of a substrate processing chamber, and applying energy to the fluorine-containing gas to generate a plasma in the plasma generation region. The plasma comprises fluorine radicals and fluorine ions. The method also includes filtering the plasma to provide a reactive gas having a higher concentration of fluorine radicals than fluorine ions, and flowing the reactive gas into a gas reaction region of the substrate processing chamber. The method also includes exposing the substrate to the reactive gas in the gas reaction region of the substrate processing chamber. The reactive gas etches the metal-containing layer at a higher etch rate than the reactive gas etches the silicon oxide layer.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin Ingle
  • Publication number: 20120238102
    Abstract: A method of selectively etching silicon nitride from a substrate comprising a silicon nitride layer and a silicon oxide layer includes flowing a fluorine-containing gas into a plasma generation region of a substrate processing chamber and applying energy to the fluorine-containing gas to generate a plasma in the plasma generation region. The plasma comprises fluorine radicals and fluorine ions. The method also includes filtering the plasma to provide a reactive gas having a higher concentration of fluorine radicals than fluorine ions and flowing the reactive gas into a gas reaction region of the substrate processing chamber. The method also includes exposing the substrate to the reactive gas in the gas reaction region of the substrate processing chamber. The reactive gas etches the silicon nitride layer at a higher etch rate than the reactive gas etches the silicon oxide layer.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin Ingle
  • Publication number: 20120211462
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. The chemical reaction resulting from the combination produces reactants which etch the patterned heterogeneous structures to produce, in embodiments, a thin residual structure exhibiting little deformation. The methods may be used to conformally trim silicon oxide while removing little or no silicon, polysilicon, silicon nitride, titanium or titanium nitride. In an exemplary embodiment, the etch processes described herein have been found to remove mold oxide around a thin cylindrical conducting structure without causing the cylindrical structure to significantly deform.
    Type: Application
    Filed: September 14, 2011
    Publication date: August 23, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20120190178
    Abstract: Methods of forming polysilicon layers are described. The methods include forming a high-density plasma from a silicon precursor in a substrate processing region containing the deposition substrate. The described methods produce polycrystalline films at reduced substrate temperature (e.g. <500° C.) relative to prior art techniques. The availability of a bias plasma power adjustment further enables adjustment of conformality of the formed polysilicon layer. When dopants are included in the high density plasma, they may be incorporated into the polysilicon layer in such a way that they do not require a separate activation step.
    Type: Application
    Filed: April 19, 2011
    Publication date: July 26, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xiaolin Chen, Young S. Lee
  • Publication number: 20120085733
    Abstract: Embodiments of the present invention pertain to methods of forming features on a substrate using a self-aligned triple patterning (SATP) process. A stack of layers is patterned near the optical resolution of a photolithography system using a high-resolution photomask. The heterogeneous stacks are selectively etched to undercut a hard mask layer beneath overlying cores. A dielectric layer, which is flowable during formation, is deposited and fills the undercut regions as well as the regions between the heterogeneous stacks. The dielectric layer is anisotropically etched and a conformal spacer is deposited on and between the cores. The spacer is anisotropically etched to leave two spacers between each core. The cores are stripped and the spacers are used together with the remaining hard mask features to pattern the substrate at triple the density of the original pattern.
    Type: Application
    Filed: March 7, 2011
    Publication date: April 12, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Hao Chen, Kedar Sapre, Anchuan Wang, Tushar Mandrekar, Jingmei Liang, Yongmei Chen, Christopher S. Ngai, Mehul Naik
  • Patent number: 8138364
    Abstract: Transparent conducting oxide thin films having a reduced indium content and/or an increased tin content are provided. In addition, processes for producing the same, precursors for producing the same, and transparent electroconductive substrate for display panels and organic electroluminescence devices, both including the transparent conducting oxide thin films, are provided.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: March 20, 2012
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Jun Ni, Anchuan Wang, Yu Yang, Andrew Metz, Shu Jin, Lian Wang
  • Publication number: 20120009796
    Abstract: Methods of decreasing the effective dielectric constant present between two conducting components of an integrated circuit are described. The methods involve the use of a gas phase etch which is selective towards the oxygen-rich portion of the low-K dielectric layer. The etch rate attenuates as the etch process passes through the relatively high-K oxygen-rich portion and reaches the low-K portion. The etch process may be easily timed since the gas phase etch process does not readily remove the desirable low-K portion.
    Type: Application
    Filed: October 21, 2010
    Publication date: January 12, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Anchuan Wang, Mehul Naik, Nitin Ingle, Young Lee, Shankar Venkataraman
  • Publication number: 20110294300
    Abstract: A method of etching patterned heterogeneous silicon-containing structures is described and includes a remote plasma etch with inverted selectivity compared to existing remote plasma etches. The methods may be used to conformally trim polysilicon while removing little or no silicon oxide. More generally, silicon-containing films containing less oxygen are removed more rapidly than silicon-containing films which contain more oxygen. Other exemplary applications include trimming silicon carbon nitride films while essentially retaining silicon oxycarbide. Applications such as these are enabled by the methods presented herein and enable new process flows. These process flows are expected to become desirable for a variety of finer linewidth structures. Methods contained herein may also be used to etch silicon-containing films faster than nitrogen-and-silicon containing films having a greater concentration of nitrogen.
    Type: Application
    Filed: April 18, 2011
    Publication date: December 1, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle