Patents by Inventor Anchuan Wang

Anchuan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8771539
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. The chemical reaction resulting from the combination produces reactants which etch the patterned heterogeneous structures to produce, in embodiments, a thin residual structure exhibiting little deformation. The methods may be used to conformally trim silicon oxide while removing little or no silicon, polysilicon, silicon nitride, titanium or titanium nitride. In an exemplary embodiment, the etch processes described herein have been found to remove mold oxide around a thin cylindrical conducting structure without causing the cylindrical structure to significantly deform.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 8, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Patent number: 8771536
    Abstract: A method of etching exposed silicon-and-carbon-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-carbon-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-carbon-containing material from the exposed silicon-and-carbon-containing material regions while very slowly removing other exposed materials. The silicon-and-carbon-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: July 8, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle, Yunyu Wang, Young Lee
  • Patent number: 8765574
    Abstract: A method for conformal dry etch of a liner material in a high aspect ratio trench is achieved by depositing or forming an inhomogeneous passivation layer which is thicker near the opening of a trench but thinner deep within the trench. The method described herein use a selective etch following formation of the inhomogeneous passivation layer. The selective etch etches liner material faster than the passivation material. The inhomogeneous passivation layer suppresses the etch rate of the selective etch near the top of the trench (where it would otherwise be fastest) and gives the etch a head start deeper in the trench (where is would otherwise be slowest). This method may also find utility in removing bulk material uniformly from within a trench.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 1, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Nitin K. Ingle, Anchuan Wang
  • Publication number: 20140166617
    Abstract: A method of etching exposed titanium oxide on heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flawed into a substrate processing region where the plasma effluents may combine with a nitrogen-containing precursor such as an amine (N:) containing precursor. Reactants thereby produced etch, the patterned heterogeneous structures with high titanium oxide selectivity while the substrate is at elevated temperature. Titanium oxide etch may alternatively involve supplying a fluorine-containing precursor and a source of nitrogen-and-hydrogen-containing precursor to the remote plasma. The methods may be used to remove titanium oxide while removing little or no low-K dielectric, polysilicon, silicon nitride or titanium nitride.
    Type: Application
    Filed: March 8, 2013
    Publication date: June 19, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Zhijun Chen, Seung Park, Mikhail Korolik, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20140154889
    Abstract: Methods of selectively etching tungsten relative to silicon-containing films (e.g. silicon oxide, silicon carbon nitride and (poly)silicon) as well as tungsten oxide are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten. The plasma effluents react with exposed surfaces and selectively remove tungsten while very slowly removing other exposed materials. Sequential and simultaneous methods are included to remove thin tungsten oxide which may, for example, result from exposure to the atmosphere.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 5, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Xikun Wang, Ching-Mei Hsu, Nitin K. Ingle, Zihui Li, Anchuan Wang
  • Publication number: 20140141621
    Abstract: A method of etching exposed patterned heterogeneous structures is described and includes a remote plasma etch formed from a reactive precursor. The plasma power is pulsed rather than left on continuously. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents selectively remove one material faster than another. The etch selectivity results from the pulsing of the plasma power to the remote plasma region, which has been found to suppress the number of ionically-charged species that reach the substrate. The etch selectivity may also result from the presence of an ion suppression element positioned between a portion of the remote plasma and the substrate processing region.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 22, 2014
    Applicant: Applied Materials, Inc.
    Inventors: He Ren, Jang-Gyoo Yang, Jonghoon Baek, Anchuan Wang, Soonam Park, Saurabh Garg, Xinglong Chen, Nitin K. Ingle
  • Publication number: 20140134842
    Abstract: A method for conformal dry etch of a liner material in a high aspect ratio trench is achieved by depositing or forming an inhomogeneous passivation layer which is thicker near the opening of a trench bat thinner deep within the trench. The methods described herein use a selective etch following formation of the inhomogeneous passivation layer. The selective etch etches liner material faster than the passivation material. The inhomogeneous passivation layer suppresses the etch rate of the selective etch near the top of the trench (where it would otherwise be fastest) and gives the etch a head start deeper in the trench (where it would otherwise be slowest). This method may also find utility in removing bulk material uniformly from within a trench.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 15, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Nitin K. Ingle, Anchuan Wang
  • Publication number: 20140099794
    Abstract: Systems and methods are described relating to semiconductor processing chambers. An exemplary chamber may include a first remote plasma system fluidly coupled with a first access of the chamber, and a second remote plasma system fluidly coupled with a second access of the chamber. The system may also include a gas distribution assembly in the chamber that may be configured to deliver both the first and second precursors into a processing region of the chamber, while maintaining the first and second precursors fluidly isolated from one another until they are delivered into the processing region of the chamber.
    Type: Application
    Filed: March 13, 2013
    Publication date: April 10, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Anchuan Wang, Xinglong Chen
  • Patent number: 8679983
    Abstract: A method of suppressing the etch rate for exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. The etch selectivity of silicon relative to silicon nitride and other silicon-and-nitrogen-containing material is increased using the method. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-nitrogen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including nitrogen trifluoride and hydrogen (H2). The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Patent number: 8679982
    Abstract: A method of suppressing the etch rate for exposed silicon-and-oxygen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. Examples of materials whose selectivity is increased using this technique include silicon nitride and silicon. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-oxygen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including a nitrogen-containing precursor and a hydrogen-containing precursor. The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20140080309
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a gas phase etch created from a remote plasma etch. The remote plasma excites a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. Reactants thereby produced etch the patterned heterogeneous structures to remove two separate regions of differing silicon oxide at different etch rates. The methods may be used to remove low density silicon oxide while removing less high density silicon oxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Seung H. Park, Yunyu Wang, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20140080308
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Zhijun Chen, Jingchun Zhang, Ching-Mei Hsu, Seung Park, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20140080310
    Abstract: A method of etching exposed silicon-nitrogen-and-carbon-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-nitrogen-and-carbon-containing material. The plasma effluents react with the patterned heterogeneous structures to selectively remove silicon-nitrogen-and-carbon-containing material from the exposed silicon-nitrogen-and-carbon-containing material regions while very slowly removing selected other exposed materials. The silicon-nitrogen-and-carbon-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element controls the number of ionically-charged species that reach the substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: Applied Materials Inc.
    Inventors: Zhijun Chen, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Patent number: 8642481
    Abstract: A method of etching exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-nitrogen-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-nitrogen-containing material from the exposed silicon-and-nitrogen-containing material regions while very slowly removing other exposed materials. The silicon-and-nitrogen-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: February 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130298942
    Abstract: Methods of removing residual polymer from vertical walls of a patterned dielectric layer are described. The methods involve the use of a gas phase etch to remove the residual polymer without substantially disturbing the patterned dielectric layer. The gas phase etch may be used on a patterned low-k dielectric layer and may maintain the low dielectric constant of the patterned dielectric layer. The gas phase etch may further avoid stressing the patterned low-k dielectric layer by avoiding the use of liquid etchants whose surface tension can upset delicate low-K features. The gas phase etch may further avoid the formation of solid etch by-products which cars also deform the delicate features.
    Type: Application
    Filed: March 8, 2013
    Publication date: November 14, 2013
    Applicant: Applied Materials, Inc.
    Inventors: He Ren, Nitin K. Ingle, Anchuan Wang
  • Patent number: 8541312
    Abstract: A method of suppressing the etch rate for exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. The etch selectivity of silicon relative to silicon nitride and other silicon-and-nitrogen-containing material is increased using the method. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-nitrogen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including nitrogen trifluoride and hydrogen (H2). The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: September 24, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Patent number: 8497211
    Abstract: A method of depositing a phosphosilicate glass (PSG) film on a substrate disposed in a substrate processing chamber includes depositing a first portion of the PSG film over the substrate using a high-density plasma process. Thereafter, a portion of the first portion of the PSG film may be etched back. The etch back process may include flowing a halogen precursor to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the etch back. The method also includes flowing a halogen scavenger to the substrate processing chamber to react with residual halogen in the substrate processing chamber, and exposing the first portion of the PSG film to a phosphorus-containing gas to provide a substantially uniform phosphorus concentration throughout the first portion of the PSG film.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 30, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Young S. Lee, Anchuan Wang, Lan Chia Chan, Shankar Venkataraman
  • Patent number: 8450191
    Abstract: Methods of forming polysilicon layers are described. The methods include forming a high-density plasma from a silicon precursor in a substrate processing region containing the deposition substrate. The described methods produce polycrystalline films at reduced substrate temperature (e.g. <500° C.) relative to prior art techniques. The availability of a bias plasma power adjustment further enables adjustment of conformality of the formed polysilicon layer. When dopants are included in the high density plasma, they may be incorporated into the polysilicon layer in such a way that they do not require a separate activation step.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 28, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xiaolin Chen, Young S. Lee
  • Publication number: 20130089988
    Abstract: Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon.
    Type: Application
    Filed: April 4, 2012
    Publication date: April 11, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130059440
    Abstract: A method of suppressing the etch rate for exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. The etch selectivity of silicon relative to silicon nitride and other silicon-and-nitrogen-containing material is increased using the method. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-nitrogen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including nitrogen trifluoride and hydrogen (H2). The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Application
    Filed: April 18, 2012
    Publication date: March 7, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee