Patents by Inventor Andreas Meiser

Andreas Meiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200052066
    Abstract: A semiconductor device includes a doped Si base substrate, one or more device epitaxial layers formed over a main surface of the doped Si base substrate, a diffusion barrier structure, and a gate formed above the diffusion barrier structure. The diffusion barrier structure includes alternating layers of Si and oxygen-doped Si formed in an upper part of the doped Si base substrate adjacent the main surface of the doped Si base substrate, in a lower part of the one or more device epitaxial layers adjacent the main surface of the doped Si base substrate, or in one or more additional epitaxial layers disposed between the main surface of the doped Si base substrate and the one or more device epitaxial layers.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Martin Poelzl, Robert Haase, Maximilian Roesch, Sylvain Leomant, Andreas Meiser, Bernhard Goller, Ravi Keshav Joshi
  • Publication number: 20200044036
    Abstract: A semiconductor device includes a transistor in a semiconductor body having a main surface. The transistor includes a source region; a drain region; a body region; a drift zone; a gate electrode at the body region, the body region and the drift zone being disposed along a first direction between the source region and the drain region, and the first direction being parallel to the main surface; a field plate disposed in each of a plurality of field plate trenches, each of the field plate trenches having a longitudinal axis extending along the first direction; and a field dielectric layer between the field plate and the drift zone, a thickness of the field dielectric layer at a bottom of each of the field plate trenches gradually increases along the first direction, the thickness being measured along a depth direction of the plurality of field plate trenches.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Applicant: Infineon Technologies AG
    Inventors: Andreas MEISER, Oliver HAEBERLEN
  • Patent number: 10553675
    Abstract: In accordance with an embodiment of an integrated circuit, a cavity is buried in a semiconductor body below a first surface of the semiconductor body. An active area portion of the semiconductor body is arranged between the first surface and the cavity. The integrated circuit further includes a trench isolation structure configured to provide a lateral electric isolation of the active area portion.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: February 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Sebastian Schmidt, Donald Dibra, Oliver Hellmund, Peter Irsigler, Andreas Meiser, Hans-Joachim Schulze, Martina Seider-Schmidt, Robert Wiesner
  • Patent number: 10546920
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type. A first semiconductor layer of a second conductivity type is on the semiconductor substrate. A buried semiconductor layer of the second conductivity type is on the first semiconductor layer. A second semiconductor layer of the second conductivity type is on the buried semiconductor layer. A trench extends through each of the second semiconductor layer, the buried semiconductor layer, and the first semiconductor layer, and into the semiconductor substrate. An insulating structure lines walls of the trench. A conductive filling in the trench is electrically coupled to the semiconductor substrate at a bottom of the trench.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: January 28, 2020
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Ralf Rudolf
  • Publication number: 20200027969
    Abstract: A method for producing a semiconductor component includes: providing a semiconductor body having a first dopant of a first conductivity type; forming a first trench in the semiconductor body starting from a first side; filling the first trench with a semiconductor filler material; forming a superjunction structure by introducing a second dopant of a second conductivity type into the semiconductor body, the semiconductor filler material being doped with the second dopant; forming a second trench in the semiconductor body starting from the first side; and forming a trench structure in the second trench.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 23, 2020
    Inventors: Till Schloesser, Christian Kampen, Andreas Meiser
  • Patent number: 10510836
    Abstract: A semiconductor device includes a gate trench extending into a Si substrate, the gate trench including a gate electrode and a gate dielectric separating the gate electrode from the Si substrate. The semiconductor device further includes a body region in the Si substrate adjacent the gate trench, the body region including a channel region which extends along a sidewall of the gate trench, a source region in the Si substrate above the body region, a contact trench extending into the Si substrate and filled with an electrically conductive material which contacts the source region and a highly doped body contact region at a bottom of the contact trench, and a diffusion barrier structure extending along at least part of the channel region and disposed between the channel region and the highly doped body contact region. The diffusion barrier structure includes alternating layers of Si and oxygen-doped Si.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: December 17, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Robert Haase, Martin Poelzl, Maximilian Roesch, Sylvain Leomant, Andreas Meiser
  • Publication number: 20190369151
    Abstract: A driver circuit associated with a power electronic system is disclosed. The driver circuit comprises a gate driver circuit configured to drive a switching circuit comprising a plurality of switches in parallel, each switch comprising a respective source bondwire. The driver circuit further comprises a bondwire fault detection circuit comprising a gate charge estimation circuit configured to measure a parameter of the switching circuit comprising a gate charge of the switching circuit or a parameter indicative of the gate charge associated with the switching circuit. The bondwire fault detection circuit further comprises a detection circuit configured to detect a fault associated with at least one source bondwire of the switching circuit, based on the measured parameter of the switching circuit.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 5, 2019
    Inventors: Andreas Meiser, Benno Koeppl, Marcus Nuebling, Markus Zannoth, Alexander Mayer
  • Publication number: 20190371882
    Abstract: The disclosure relates to a semiconductor device, including a semiconductor substrate of a first conductivity type and a semiconductor layer of a second conductivity type on the semiconductor substrate, the second conductivity type being different than the first conductivity type. The semiconductor device also includes an isolation structure electrically isolating a first region of the semiconductor layer from a second region of the semiconductor layer. A shallow trench isolation structure vertically extends from a surface of the semiconductor layer into the first region of the semiconductor layer. An electrical resistor is formed on the shallow trench isolation structure.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 5, 2019
    Inventors: Andreas Meiser, Grzegorz Kozlowski, Till Schloesser
  • Patent number: 10483360
    Abstract: A method of manufacturing a semiconductor device is providing, which includes forming a trench in a semiconductor substrate, forming an oxide layer over sidewalls and over a bottom side of the trench, performing an ion implantation process, forming a cover layer, and patterning the covering layer, thereby forming an uncovered area and a covered area of the oxide layer, respectively. The method further includes performing an isotropic etching process thereby removing portions of the uncovered area of the oxide layer and removing a part of a surface portion of the covered area adjacent to the uncovered portions, and removing remaining portions of the covering layer.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: November 19, 2019
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Oliver Haeberlen
  • Publication number: 20190348525
    Abstract: The disclosure relates to a method for producing a semiconductor device. The method includes providing a semiconductor body having first dopants of a first conductivity type and second dopants of a second conductivity type. The method also includes forming a first trench in the semiconductor body via a first mask, and filling the first trench with a semiconductor filling material. The method further includes forming a superjunction structure by introducing a portion of the first dopants from a region of the semiconductor body into the semiconductor filling material, forming a second trench in the semiconductor body via a second mask, which is formed in a manner self-aligned with respect to the first mask, and forming a trench structure in the second trench.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 14, 2019
    Inventors: Andreas Meiser, Till Schloesser
  • Patent number: 10453915
    Abstract: A semiconductor device includes a semiconductor body having a semiconductor substrate of a first conductivity type and a semiconductor layer of the first conductivity type on the substrate. A trench structure extends into the semiconductor body from a first surface and includes a gate electrode and at least one field electrode arranged between the gate electrode and a bottom side of the trench structure. A body region adjoins the trench structure and laterally extends from a transistor cell area into an edge termination area. A pn junction is between the body region and semiconductor layer. A doping concentration of at least one of the body region and semiconductor layer is lowered at a lateral end of the pn junction in the edge termination area compared to a doping concentration of the at least one of the body region and semiconductor layer at the pn junction in the transistor cell area.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 22, 2019
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Karl-Heinz Bach, Christian Kampen, Dietmar Kotz, Andrew Christopher Graeme Wood, Markus Zundel
  • Publication number: 20190312114
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type and a semiconductor layer of a second conductivity type on the semiconductor substrate, such that a first section of a pn junction is formed between the semiconductor layer and the semiconductor substrate. A trench structure extends through the semiconductor layer into the semiconductor substrate. The trench structure includes an insulation structure and a contact structure. The insulation structure is formed between the semiconductor layer and the contact structure. The contact structure is electrically connected to the semiconductor substrate at a bottom of the trench. A first semiconductor region of the second conductivity type adjoins the insulation structure and extends along the trench structure into a depth range between the first section of the pn junction and the bottom, such that a second section of the pn junction is formed between the first semiconductor region and the semiconductor substrate.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 10, 2019
    Inventors: Andreas Meiser, Ralf Rudolf
  • Patent number: 10439030
    Abstract: A semiconductor device includes a transistor in a semiconductor body having a first main surface. The transistor includes: a source contact electrically connected to a source region; a drain contact electrically connected to a drain region; a gate electrode at the channel region, the channel region and a drift zone disposed along a first direction between the source and drain regions, the first direction being parallel to the first main surface, the channel region patterned into a ridge by adjacent gate trenches formed in the first main surface, the adjacent gate trenches spaced apart in a second direction perpendicular to the first direction, a longitudinal axis of the ridge extending in the first direction and a longitudinal axis of the gate trenches extending in the first direction; and at least one of the source and drain contacts being adjacent to a second main surface opposite the first main surface.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: October 8, 2019
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Rolf Weis, Franz Hirler, Martin Vielemeyer, Markus Zundel, Peter Irsigler
  • Publication number: 20190296110
    Abstract: A semiconductor device includes trench gate structures that extend from a first surface into a silicon carbide portion. A shielding region between a drift zone and the trench gate structures along a vertical direction orthogonal to the first surface forms an auxiliary pn junction with the drift zone. Channel regions and the trench gate structures are successively arranged along a first horizontal direction. The channel regions are arranged between a source region and a current spread region along a second horizontal direction orthogonal to the first horizontal direction. Portions of mesa sections between neighboring trench gate structures fully deplete at a gate voltage within an absolute maximum rating of the semiconductor device.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: Andreas Meiser, Anton Mauder, Roland Rupp, Oana Julia Spulber
  • Publication number: 20190287804
    Abstract: A method includes: forming first and second trenches in a semiconductor body; forming a first material layer on the semiconductor body in the first and second trenches such that a first residual trench remains in the first trench and a second residual trench remains in the second trench; removing the first material from the second trench; and forming a second material layer on the first material layer in the first residual trench and on the semiconductor body in the second trench. The first material layer includes dopants of a first doping type and the second material layer includes dopants of a second doping type. The method further includes diffusing dopants from the first material layer in the first trench into the semiconductor body to form a first doped region, and from the second material layer in the second trench into the semiconductor body to form a second doped region.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 19, 2019
    Inventors: Rolf Weis, Thomas Gross, Hermann Gruber, Franz Hirler, Andreas Meiser, Markus Rochel, Till Schloesser, Detlef Weber
  • Publication number: 20190259870
    Abstract: A semiconductor device includes a trench structure extending from a first surface into a semiconductor body composed of silicon carbide. The trench structure includes an electrode and between the electrode and the first surface a gate electrode. A shielding region adjoining the electrode forms a first pn junction with a drift structure formed in the semiconductor body. A Schottky contact is formed between the drift structure and a first contact structure.
    Type: Application
    Filed: February 20, 2019
    Publication date: August 22, 2019
    Inventor: Andreas Meiser
  • Patent number: 10381475
    Abstract: A semiconductor device and a method of manufacturing the same is provided. The semiconductor device including a transistor cell in a semiconductor substrate having a first main surface. The transistor cell includes a gate electrode in a gate trench in the first main surface adjacent to a body region. A longitudinal axis of the gate trench extends in a first direction parallel to the first main surface. A source region, a body region and a drain region are disposed along the first direction. A source contact comprises a first source contact portion and a second source contact portion. The second source contact portion is disposed at a second main surface of the semiconductor substrate. The first source contact portion includes a source conductive material in direct contact with the source region and a portion of the semiconductor substrate arranged between the source conductive material and the second source contact portion.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: August 13, 2019
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Andreas Meiser, Karl-Heinz Gebhardt, Till Schloesser, Detlef Weber
  • Patent number: 10355087
    Abstract: A semiconductor device includes a transistor in a semiconductor substrate having a main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, a gate electrode, and a gate dielectric adjacent to the gate electrode. The gate electrode is disposed adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the main surface between the source region and the drain region. The gate dielectric has a thickness that varies at different positions of the gate electrode.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: July 16, 2019
    Assignee: Infineon Technologies AG
    Inventors: Martin Vielemeyer, Andreas Meiser, Till Schloesser, Franz Hirler, Martin Poelzl
  • Publication number: 20190198609
    Abstract: A transistor arrangement includes: a layer stack with first and second semiconductor layers of complementary first and second doping types; a first source region of a first transistor device adjoining the first semiconductor layers; a first drain region of the first transistor device adjoining the second semiconductor layers and spaced apart from the first source region; gate regions of the first transistor device, each gate region adjoining at least one second semiconductor layer, being arranged between the first source region and the first drain region, and being spaced apart from the first source region and the first drain region; a third semiconductor layer adjoining the layer stack and each of the first source region, first drain region, and each gate region; and active regions of a second transistor device integrated in the third semiconductor layer in a second region spaced apart from a first region of the third semiconductor layer.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 27, 2019
    Inventors: Rolf Weis, Henning Feick, Franz Hirler, Andreas Meiser
  • Publication number: 20190194587
    Abstract: This invention relates to a floating horizontal tubular photobioreactor system comprising a photosynthetically active area made of flexible tubes connected to rigid manifolds with an integrated system for mixing, aeration and degassing. This invention further relates to methods of using the floating photobioreactor system.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 27, 2019
    Inventors: Michael Welch, Lawrence Walmsley, Andreas Meiser, George Philippidis