Patents by Inventor Andrew May

Andrew May has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8691509
    Abstract: In certain embodiments, the invention provides amplification methods in which nucleotide tag(s) and a barcode nucleotide sequence are added to target nucleotide sequences. In other embodiments, the present invention provides a microfluidic device that includes a plurality of first input lines and a plurality of second input lines. The microfluidic device also includes a plurality of sets of first chambers and a plurality of sets of second chambers. Each set of first chambers is in fluid communication with one of the plurality of first input lines. Each set of second chambers is in fluid communication with one of the plurality of second input lines. The microfluidic device further includes a plurality of first pump elements in fluid communication with a first portion of the plurality of second input lines and a plurality of second pump elements in fluid communication with a second portion of the plurality of second input lines.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 8, 2014
    Assignee: Fluidigm Corporation
    Inventors: Andrew May, Peilin Chen, Jun Wang, Fiona Kaper, Megan Anderson
  • Patent number: 8651330
    Abstract: A refrigeration appliance with a hot water dispenser includes a refrigerated cabinet having a dispenser area, a cabinet water inlet in the refrigerated cabinet connectable to a premises water line, and a hot water storage tank. The tank has a tank body, a heater in the tank body, an inlet for admitting water into the tank body supplied via the cabinet water inlet, and an outlet for providing water via a dispensing conduit to a dispenser in the dispenser area. The inlet includes a venturi portion for creating a reduced pressure within the hot water storage tank via flow of water into the hot water storage tank. The reduced pressure communicates with the dispensing conduit via the outlet so that, after dispensing water remaining in the dispensing conduit is drawn toward the tank body. Refrigeration devices with premises line pressure water distribution systems are also disclosed.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 18, 2014
    Assignee: General Electric Company
    Inventors: Andrew Reinhard Krause, Robert Lee Lewis, Jr., Kevin Farrelly Nolan, Arun Talegaonkar, Alan Joseph Mitchell, Jeffrey Martin Wood, Lorina June White, Russell James Fallon, Jeffrey Michael Colyer, Jason Andrew May
  • Publication number: 20140010679
    Abstract: Improvements in compressor manufacture are achieved by utilizing polymeric components which retain at least 90% of their dimensions after being exposed to a mixture of refrigerants and/or lubricants for 30 days at 60° C. Polymeric materials include (i) polyetherimides, (ii) polyphenylene sulfides, (iii) polyketones, (iv) polysulfones, (v) liquid crystal polymers, and (vi) combinations thereof. Metal coatings on the polymers are the preferred embodiments for housings.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 9, 2014
    Inventors: Brian Rice, Marcos Borges, Andrew May, Donald W. DeMello, Gurulingamurthy Haralur, Shawn Lee, Ernest Caldwell
  • Publication number: 20130323732
    Abstract: In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out “in parallel,” i.e., essentially simultaneously in the separate reaction volumes.
    Type: Application
    Filed: May 21, 2013
    Publication date: December 5, 2013
    Applicant: Fluidigm Corporation
    Inventors: Megan Anderson, Peilin Chen, Brian Fowler, Fiona Kaper, Ronald Lebofsky, Andrew May
  • Patent number: 8591834
    Abstract: New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 26, 2013
    Assignee: Fluidigm Corporation
    Inventors: David S. Cohen, Robert C. Jones, Andrew May, Hany Nassef, Jing Wang
  • Publication number: 20130302807
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 14, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130302883
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 14, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130302884
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 14, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130296196
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 7, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Publication number: 20130295602
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Application
    Filed: February 28, 2013
    Publication date: November 7, 2013
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A.A. West
  • Patent number: 8551787
    Abstract: The invention provides microfluidic devices and methods for carrying out sequential binary reactions.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: October 8, 2013
    Assignee: Fluidigm Corporation
    Inventor: Andrew May
  • Publication number: 20130108249
    Abstract: A refrigeration appliance with a hot water dispenser includes a refrigerated cabinet having a dispenser area, a cabinet water inlet in the refrigerated cabinet connectable to a premises water line, and a hot water storage tank. The tank has a tank body, a heater in the tank body, an inlet for admitting water into the tank body supplied via the cabinet water inlet, and an outlet for providing water via a dispensing conduit to a dispenser in the dispenser area. The inlet includes a venturi portion for creating a reduced pressure within the hot water storage tank via flow of water into the hot water storage tank. The reduced pressure communicates with the dispensing conduit via the outlet so that, after dispensing water remaining in the dispensing conduit is drawn toward the tank body. Refrigeration devices with premises line pressure water distribution systems are also disclosed.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew Reinhard Krause, Robert Lee Lewis, JR., Kevin Farrelly Nolan, Arun Talegaonkar, Alan Joseph Mitchell, Jeffrey Martin Wood, Lorina June White, Russell James Fallon, Jeffrey Michael Colyer, Jason Andrew May
  • Patent number: 8422632
    Abstract: An integrated fluidic circuit includes a substrate layer and a first structure coupled to the substrate layer and including a plurality of channels. The first structure is configured to provide for flow of one or more materials through the plurality of channels. The integrated fluidic circuit also includes a second structure coupled to the substrate layer. The second structure includes a plurality of control channels configured to receive an actuation pressure. The integrated fluidic circuit is characterized by a thickness of less than 1.5 mm.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 16, 2013
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Andrew May
  • Patent number: 8420017
    Abstract: A microfluidic device is described that has a slug mixing arrangement. A reaction well has an input flow channel with a first valve near the reaction well, and a second valve further from the reaction well. A fluid source is connected to the segment in between the two valves. A second fluid source is connected behind the second valve. The channel between the two valves receives the first fluid by blind filling when the two valves are closed. The reaction well receives the first fluid followed by the second fluid when the first and second valves are open.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 16, 2013
    Assignee: Fluidigm Corporation
    Inventors: Robert C Jones, Jing Wang, Andrew May, David Cohen
  • Patent number: 8365541
    Abstract: A refrigerator and a method of operating a refrigerator to determine the time at which to initiate a defrost cycle is provided. Changes in the voltage provided to an evaporator fan are used to determine and/or predict when to initiate a defrost cycle. Adjustments to the timing of the defrost cycle can be made based on known periods of peak energy demand and/or the increased costs associated with operating the defrost cycle during such peak energy demand periods.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Kenneth Joseph Hanley, Jeffrey Martin Wood, Martin Christopher Severance, Jason Andrew May
  • Publication number: 20130005585
    Abstract: Described herein are methods useful for incorporating one or more adaptors and/or nucleotide tag(s) and/or barcode nucleotide sequence(s) one, or typically more, target nucleotide sequences. In particular embodiments, nucleic acid fragments having adaptors, e.g., suitable for use in high-throughput DNA sequencing are generated. In other embodiments, information about a reaction mixture is encoded into a reaction product. Also described herein are methods and kits useful for amplifying one or more target nucleic acids in preparation for applications such as bidirectional nucleic acid sequencing. In particular embodiments, methods of the invention entail additionally carrying out bidirectional DNA sequencing. Also described herein are methods for encoding and detecting and/or quantifying alleles by primer extension.
    Type: Application
    Filed: May 21, 2012
    Publication date: January 3, 2013
    Applicant: FLUIDIGM CORPORATION
    Inventors: Megan Anderson, Peilin Chen, Brian Fowler, Robert C. Jones, Fiona Kaper, Ronald Lebofsky, Andrew May
  • Publication number: 20120305087
    Abstract: New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
    Type: Application
    Filed: April 4, 2012
    Publication date: December 6, 2012
    Applicant: Fluidigm Corporation
    Inventors: David S. Cohen, Jing Wang, Andrew May, Robert C. Jones, Hany Nassef
  • Publication number: 20120297817
    Abstract: An assembly for filtering water includes a housing, a water inlet for supplying unfiltered water to the housing, and a water filter including an outer casing attached to the housing in communication with the water inlet and a filter medium within the outer casing, the water filter filtering the unfiltered water through filter medium to provide filtered water. A water outlet is attached to the housing for transferring filtered water from the outer casing to a device via the housing. Some sort of indicia is located on the outer casing, and an optical device detects a feature of the indicia to determine if the water filter is properly installed in the housing. Related refrigeration appliances incorporating such devices are also disclosed.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew Reinhard Krause, Russell James Fallon, Jason Andrew May
  • Publication number: 20120195810
    Abstract: The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
    Type: Application
    Filed: September 9, 2010
    Publication date: August 2, 2012
    Applicant: Fluidigm Corporation
    Inventors: David Cohen, Andrew May, Martin Pieprzyk, Brian Fowler, Kim Huat Lee, Jun Yan, Ming Fang Zhou, Seng Beng Ng
  • Patent number: 8157434
    Abstract: New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: April 17, 2012
    Assignee: Fluidigm Corporation
    Inventors: David S. Cohen, Jing Wang, Andrew May, Robert C. Jones, Hany Nassef