Patents by Inventor Asao Nishimura

Asao Nishimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6326284
    Abstract: A semiconductor device produced by forming an oxide film on a substrate, heat treating the oxide film at a temperature of 800° C. or higher in an inert atmosphere, followed by conventional steps for formation of a transistor, is improved in electrical reliability due to relaxation of stress generated in the oxide film or in the surface of substrate.
    Type: Grant
    Filed: March 4, 1996
    Date of Patent: December 4, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Hideo Miura, Shuji Ikeda, Norio Suzuki, Yasuhide Hagiwara, Hiroyuki Ohta, Asao Nishimura
  • Patent number: 6314819
    Abstract: A method for measuring an adhesion strength of a resin material which is capable of accurately and readily measuring a universal adhesion strength independent of dimensions and shapes of specimen. A delamination portion is partially formed between a resin and an adherend material. Loads in two different directions are applied to an adhering interface such that opposed shear stresses are generated. As a result, a true adhering strength can be obtained from an apparent delamination propagating strength in each case.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: November 13, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Asao Nishimura, Naotaka Tanaka, Isao Hirose
  • Publication number: 20010035575
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: November 26, 1999
    Publication date: November 1, 2001
    Inventors: CHUICHI MIYAZAKI, YUKIHARU AKIYAMA, MASANORI SHIBAMOTO, TOMOAKI KUDAISHI, ICHIRO ANJOH, KUNIHIKO NISHI, ASAO NISHIMURA, HIDEKI TANAKA, RYOSUKE KIMOTO, KUNIHIRO TSUBOSAKI, AKIO HASEBE
  • Patent number: 6307269
    Abstract: A semiconductor device including a semiconductor chip having connection terminals in a peripheral part of a main surface thereof; an elastic body disposed on the main surface leaving the connection terminals exposed; an insulating tape formed on the elastic body and having openings in areas where the connection terminals are situated; plural leads formed on the top surface of the insulating tape, one end of each lead being connected to one of the connection terminals and the other end being disposed on the elastic body; plural bump electrodes formed on the other ends of the plural leads; and a resin body for sealing the connection terminals and one end of each of the leads, wherein the insulating tape protrudes beyond the chip where the plural connection terminals are arranged, and wherein the shape of the resin body is restricted by the protruding part of the insulating tape.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: October 23, 2001
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd., Akita Electronics Co., Ltd.
    Inventors: Yukiharu Akiyama, Tomoaki Kudaishi, Takehiro Ohnishi, Noriou Shimada, Shuji Eguchi, Asao Nishimura, Ichiro Anjo, Kunihiro Tsubosaki, Chuichi Miyazaki, Hiroshi Koyama, Masanori Shibamoto, Akira Nagai, Masahiko Ogino
  • Patent number: 6303982
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: October 16, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto
  • Patent number: 6297073
    Abstract: A semiconductor device, is provided will semiconductor chips having a plurality of electrodes for external connection, elastomer resin portions formed of an elastomer resin, which are bonded to the semiconductor chip excepting at least some of the plurality of electrodes, a tape layer of resin including tape wiring patterns on the surface thereof, a plurality of solder bumps for bonding the printed wiring pattern to the tape wiring patterns, leads for connecting the plurality of electrodes of the semiconductor chips to the tape wiring patterns, and seal resin for covering the leads and the plurality of electrodes which are connected by the leads. The elastomer resin has a modulus of transverse elasticity not less than 50 MPa and not more than 750 MPa.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: October 2, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kitano, Ryuji Kohno, Naotaka Tanaka, Akihiro Yaguchi, Tetsuo Kumazawa, Ichiro Anjoh, Hideki Tanaka, Asao Nishimura, Shuji Eguchi, Akira Nagai, Mamoru Mita
  • Patent number: 6297544
    Abstract: A semiconductor device having power supply leads and signal leads on the main surface of a semiconductor chip. Since floating capacitance applied to the power supply leads can be made large and floating capacitance applied to the signal leads can be made small by making the interval between the signal leads and the semiconductor chip larger than the interval between the power supply leads and the semiconductor chip, the prevention of fluctuations in power source potential and the acceleration of the signal propagation speed can be carried out at the same time. As a result, the electric characteristics of the semiconductor device can be improved.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: October 2, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Nakamura, Mitsuaki Katagiri, Kunihiro Tsubosaki, Asao Nishimura, Masachika Masuda
  • Publication number: 20010008302
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Application
    Filed: January 30, 2001
    Publication date: July 19, 2001
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsurou Matsumoto
  • Publication number: 20010008304
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 25, 2001
    Publication date: July 19, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010007781
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 30, 2001
    Publication date: July 12, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010005055
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 30, 2001
    Publication date: June 28, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010004127
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 30, 2001
    Publication date: June 21, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010003059
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 29, 2001
    Publication date: June 7, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010002730
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 22, 2001
    Publication date: June 7, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010003048
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 25, 2001
    Publication date: June 7, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010002724
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 29, 2001
    Publication date: June 7, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Publication number: 20010002064
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 17, 2001
    Publication date: May 31, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki
  • Publication number: 20010002069
    Abstract: A ball grid array type semiconductor package includes a semiconductor chip formed with bonding pads, an elastomer bonded to the semiconductor chip, a flexible wiring substrate bonded to the elastomer and formed with wirings connected at one end of the bonding pads of the semiconductor chip, a solder resist formed on the main surface of the flexible wiring substrate and solder bump electrodes connected to the other ends of the wirings. The elastomer is bonded to the flexible wiring substrate on the side of the tape, the solder resist is formed on the side of the wirings, and the solder bump electrodes are connected with the wirings by way of through holes formed in the solder resist.
    Type: Application
    Filed: January 19, 2001
    Publication date: May 31, 2001
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masanori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe
  • Patent number: 6213386
    Abstract: In the conventional bump forming method that can be applied to a semiconductor device in which a large number of bumps are required to form, there are various limitations to the material of which the bumps are made, to enough cubic volume of bumps and to small scattering of the bump height. According to the invention, solder balls and a tool having a large number of through-holes are used, and under the condition that the through-holes of the tool are aligned with the pads of the semiconductor device, the solder balls are charged into the through-holes, pressed to be fixed on the pads, and then reflowed to form bumps.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: April 10, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Kosuke Inoue, Asao Nishimura, Takamichi Suzuki, Teru Fujii, Masayuki Morishima, Yasuyuki Nakajima, Noriyuki Oroku
  • Publication number: 20010000116
    Abstract: A semiconductor device is provided which is highly reliable and operable at fast speed and low noises. In this semiconductor device, there are provided a power wiring section 1003a, a ground wiring section 1003b and a signal wiring section 1003c are formed on one level. The power wiring section or the ground wiring section is formed adjacently on both sides of at least one part of the signal wiring section.
    Type: Application
    Filed: December 8, 2000
    Publication date: April 5, 2001
    Inventors: Hiroya Shimizu, Asao Nishimura, Tosiho Miyamoto, Hideki Tanaka, Hideo Miura