Patents by Inventor Ashish A. Verma

Ashish A. Verma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11640984
    Abstract: Techniques and mechanisms for providing electrical insulation or other protection of an integrated circuit (IC) device with a spacer structure which comprises an (anti)ferromagnetic material. In an embodiment, a transistor comprises doped source or drain regions and a channel region which are each disposed in a fin structure, wherein a gate electrode and an underlying dielectric layer of the transistor each extend over the channel region. Insulation spacers are disposed on opposite sides of the gate electrode, where at least a portion of one such insulation spacer comprises an (anti)ferroelectric material. Another portion of the insulation spacer comprises a non-(anti)ferroelectric material. In another embodiment, the two portions of the spacer are offset vertically from one another, wherein the (anti)ferroelectric portion forms a bottom of the spacer.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Chia-Ching Lin, Owen Loh, Seung Hoon Sung, Aditya Kasukurti, Sou-Chi Chang, Tanay Gosavi, Ashish Verma Penumatcha
  • Patent number: 11637191
    Abstract: Describe is a resonator that uses ferroelectric (FE) materials in the gate of a transistor as a dielectric. The use of FE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, FE material expands or contacts depending on the applied electric field on the gate of the transistor. As such, acoustic waves are generated by switching polarization of the FE materials. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above the FE based transistor.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: April 25, 2023
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Chia-ching Lin, Raseong Kim, Ashish Verma Penumatcha, Uygar Avci, Ian Young
  • Publication number: 20230111323
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to minimizing sub channel leakage within stacked GAA nanosheet transistors by doping an oxide layer on top of the sub channel. In embodiments, this doping may include selective introduction of charge species, for example carbon, within the gate oxide layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 25, 2021
    Publication date: April 13, 2023
    Inventors: Rahul RAMAMURTHY, Ashish Verma PENUMATCHA, Sarah ATANASOV, Seung Hoon SUNG, Inanc MERIC, Uygar E. AVCI
  • Publication number: 20230113614
    Abstract: Thin film transistors having CMOS functionality integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a first device including a first two-dimensional (2D) material layer, and a first gate stack around the first 2D material layer. The first gate stack has a gate electrode around a gate dielectric layer. A second device is stacked on the first device. The second device includes a second 2D material layer, and a second gate stack around the second 2D material layer. The second gate stack has a gate electrode around a gate dielectric layer. The second 2D material layer has a composition different than a composition of the first 2D material layer.
    Type: Application
    Filed: September 24, 2021
    Publication date: April 13, 2023
    Inventors: Kevin P. O'BRIEN, Chelsey DOROW, Carl NAYLOR, Kirby MAXEY, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Scott B. CLENDENNING, Urusa ALAAN, Tristan A. TRONIC
  • Publication number: 20230099814
    Abstract: Transistors, devices, systems, and methods are discussed related to transistors including 2D material channels and heterogeneous 2D materials on the 2D material channels and coupled to source and drain metals, and their fabrication. The 2D material channels of the transistor allow for gate length scaling, improved switching performance, and other advantages and the heterogeneous 2D materials improve contact resistance of the transistor devices.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Kirby Maxey, Ashish Verma Penumatcha, Carl Naylor, Chelsey Dorow, Kevin O'Brien, Shriram Shivaraman, Tanay Gosavi, Uygar Avci
  • Publication number: 20230100451
    Abstract: Transistors, devices, systems, and methods are discussed related to transistors including a number of 2D material channel layers and source and drain control electrodes coupled to source and drain control regions of the 2D material channels. The source and drain control electrodes are on opposite sides of a gate electrode, which controls a channel region of the 2D material channels. The source and drain control electrodes provide for reduced contact resistance of the transistor, the ability to create complex logic gates, and other advantages.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Kirby Maxey, Ashish Verma Penumatcha, Carl Naylor, Chelsey Dorow, Kevin O?Brien, Shriram Shivaraman, Tanay Gosavi, Uygar Avci
  • Publication number: 20230098467
    Abstract: Thin film transistors having a spin-on two-dimensional (2D) channel material are described. In an example, an integrated circuit structure includes a first device layer including a first two-dimensional (2D) material layer above a substrate. The first 2D material layer includes molybdenum, sulfur, sodium and carbon. A second device layer including a second 2D material layer is above the substrate. The second 2D material layer includes tungsten, selenium, sodium and carbon.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Shriram SHIVARAMAN, Uygar E. AVCI, Patrick THEOFANIS, Charles MOKHTARZADEH, Matthew V. METZ, Scott B. CLENDENNING
  • Publication number: 20230101370
    Abstract: Thin film transistors having multi-layer gate dielectric structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is over the 2D material layer, the gate stack having a first side opposite a second side, and the gate stack having a gate electrode around a gate dielectric structure. A first gate spacer is on the 2D material layer and adjacent to the first side of the gate stack. A second gate spacer is on the 2D material layer and adjacent to the second side of the gate stack, wherein the first gate spacer and the second gate spacer are continuous with a layer of the gate dielectric structure. A first conductive structure is coupled to the 2D material layer and adjacent to the first gate spacer. A second conductive structure is coupled to the 2D material layer and adjacent to the second gate spacer.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Sudarat LEE, Chelsey DOROW, Kevin P. O'BRIEN, Carl H. NAYLOR, Kirby MAXEY, Charles MOKHTARZADEH, Ashish Verma PENUMATCHA, Scott B. CLENDENNING, Uygar E. AVCI
  • Publication number: 20230097898
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to a transistor structure that includes a monolayer within an oxide material on a gate metal. There may be a stack of these structures. The monolayer, which may include a semiconductor material, in embodiments may include multiple monolayer sheets that are stacked on top of each other. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kevin P. O'BRIEN, Chelsey DOROW, Carl H. NAYLOR, Uygar E. AVCI, Tristan A. TRONIC, Ashish Verma PENUMATCHA, Kirby MAXEY, Sudarat LEE, Scott B. CLENDENNING
  • Publication number: 20230102695
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit (IC) structure fabrication and, in particular, to IC structures with graphene contacts. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING
  • Publication number: 20230100713
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit (IC) structure fabrication and, in particular, IC structures with an improved two-dimensional (2D) channel architecture. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Chelsey DOROW, Kevin P. O'BRIEN, Carl H. NAYLOR, Kirby MAXEY, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI
  • Publication number: 20230101760
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a first transistor on a first level, and a second transistor on a second level above the first level. In an embodiment, an insulating layer is between the first level and the second level, and a via passes through the insulating layer, and electrically couples the first transistor to the second transistor. In an embodiment, the first transistor and the second transistor comprise a first channel, and a second channel over the first channel. In an embodiment, the first second transistor further comprise a gate structure between the first channel and the second channel, a source contact on a first end of the first channel and the second channel, and a drain contact on a second end of the first channel and the second channel.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kevin P. O'BRIEN, Uygar E. AVCI, Scott B. CLENDENNING, Chelsey DOROW, Sudarat LEE, Kirby MAXEY, Carl H. NAYLOR, Tristan A. TRONIC, Shriram SHIVARAMAN, Ashish Verma PENUMATCHA
  • Publication number: 20230100505
    Abstract: Embodiments disclosed herein include transistor devices and methods of forming such devices. In an embodiment, a transistor device comprises a first channel, wherein the first channel comprises a semiconductor material and a second channel above the first channel, wherein the second channel comprises the semiconductor material. In an embodiment, a first spacer is between the first channel and the second channel, and a second spacer is between the first channel and the second channel. In an embodiment, a first gate dielectric is over a surface of the first channel that faces the second channel, and a second gate dielectric is over a surface of the second channel that faces the first channel. In an embodiment, the first gate dielectric is physically separated from the second gate dielectric.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ashish Verma PENUMATCHA, Sarah ATANASOV, Seung Hoon SUNG, Rahul RAMAMURTHY, I-Cheng TUNG, Uygar E. AVCI, Matthew V. METZ, Jack T. KAVALIEROS, Chia-Ching LIN, Kaan OGUZ
  • Publication number: 20230100952
    Abstract: Embodiments disclosed herein include transistors and transistor gate stacks. In an embodiment, a transistor gate stack comprises a semiconductor channel. In an embodiment, an interlayer (IL) is over the semiconductor channel. In an embodiment, the IL has a thickness of 1 nm or less and comprises zirconium. In an embodiment, a gate dielectric is over the IL, and a gate metal over the gate dielectric.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: I-Cheng TUNG, Ashish Verma PENUMATCHA, Seung Hoon SUNG, Sarah ATANASOV, Jack T. KAVALIEROS, Matther V. METZ, Uygar E. AVCI, Rahul RAMAMURTHY, Chia-Ching LIN, Kaan OGUZ
  • Publication number: 20230101604
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to three-dimensional (3D) memory devices with transition metal dichalcogenide (TMD) channels. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ashish Verma PENUMATCHA, Uygar E. AVCI, Tanay GOSAVI, Shriram SHIVARAMAN, Carl H. NAYLOR, Chelsey DOROW, Ian A. YOUNG, Nazila HARATIPOUR, Kevin P. O'BRIEN
  • Publication number: 20230096347
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a sheet that is a semiconductor. In an embodiment a length dimension of the sheet and a width dimension of the sheet are greater than a thickness dimension of the sheet. In an embodiment, a gate structure is around the sheet, and a first spacer is adjacent to a first end of the gate structure, and a second spacer adjacent to a second end of the gate structure. In an embodiment, a source contact is around the sheet and adjacent to the first spacer, and a drain contact is around the sheet and adjacent to the second spacer.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kevin P. O'BRIEN, Tristan A. TRONIC, Anandi ROY, Ashish Verma PENUMATCHA, Carl H. NAYLOR, Kirby MAXEY, Sudarat LEE, Chelsey DOROW, Scott B. CLENDENNING, Uygar E. AVCI
  • Patent number: 11616130
    Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Devin Merrill, Ashish Verma Penumatcha, Chia-Ching Lin, Owen Loh
  • Publication number: 20230090093
    Abstract: Thin film transistors having semiconductor structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is above the 2D material layer, the gate stack having a first side opposite a second side. A semiconductor structure including germanium is included, the semiconductor structure laterally adjacent to and in contact with the 2D material layer adjacent the first side of the gate stack. A first conductive structure is adjacent the first side of the second gate stack, the first conductive structure over and in direct electrical contact with the semiconductor structure. The semiconductor structure is intervening between the first conductive structure and the 2D material layer. A second conductive structure is adjacent the second side of the second gate stack, the second conductive structure over and in direct electrical contact with the 2D material layer.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Ashish Verma PENUMATCHA, Uygar E. AVCI, Chelsey DOROW, Tanay GOSAVI, Chia-Ching LIN, Carl NAYLOR, Nazila HARATIPOUR, Kevin P. O'BRIEN, Seung Hoon SUNG, Ian A. YOUNG, Urusa ALAAN
  • Publication number: 20230087668
    Abstract: Thin film transistors having strain-inducing structures integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a two-dimensional (2D) material layer above a substrate. A gate stack is on the 2D material layer, the gate stack having a first side opposite a second side. A first gate spacer is on the 2D material layer and adjacent to the first side of the gate stack. A second gate spacer is on the 2D material layer and adjacent to the second side of the gate stack. The first gate spacer and the second gate spacer induce a strain on the 2D material layer. A first conductive structure is on the 2D material layer and adjacent to the first gate spacer. A second conductive structure is on the 2D material layer and adjacent to the second gate spacer.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Chelsey DOROW, Kevin P. O'BRIEN, Carl NAYLOR, Kirby MAXEY, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI
  • Publication number: 20230088101
    Abstract: Thin film transistors having edge-modulated two-dimensional (2D) channel material are described. In an example, an integrated circuit structure includes a device layer including a two-dimensional (2D) material layer above a substrate, the 2D material layer including a center portion and first and second edge portions, the center portion consisting essentially of molybdenum or tungsten and of sulfur or selenium, and the first and second edge portions including molybdenum or tungsten and including tellurium.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Carl H. NAYLOR, Kirby MAXEY, Kevin P. O'BRIEN, Chelsey DOROW, Sudarat LEE, Ashish Verma PENUMATCHA, Uygar E. AVCI, Matthew V. METZ, Scott B. CLENDENNING