Patents by Inventor Ashok V. Krishnamoorthy

Ashok V. Krishnamoorthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9812845
    Abstract: An optical transmitter includes: a set of reflective semiconductor optical amplifiers (RSOAs) or other reflective gain media, a set of ring filters, a set of intermediate waveguides, a shared waveguide, a shared loop mirror, and an output waveguide. Each intermediate waveguide channels light from an RSOA in proximity to an associated ring filter to cause optically coupled light to circulate in the associated ring filter. The shared waveguide is coupled to the shared loop mirror, and is located in proximity to the set of ring filters, so that light circulating in each ring filter causes optically coupled light to flow in the shared waveguide. Each RSOA forms a lasing cavity with the shared loop reflector, wherein each lasing cavity has a different wavelength associated with a resonance of its associated ring filter. The output waveguide is optically coupled to the shared loop mirror and includes an electro-optical modulator.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: November 7, 2017
    Assignee: Oracle International Corporation
    Inventors: Jin-Hyoung Lee, Xuezhe Zheng, Daniel Y. Lee, Ying Luo, Ashok V. Krishnamoorthy
  • Patent number: 9812842
    Abstract: A hybrid optical source comprises an optical gain chip containing an optical gain material that provides an optical signal, and an optical reflector chip including an optical reflector. It also includes a semiconductor-on-insulator (SOI) chip, which comprises a semiconductor layer having a planarized surface facing the semiconductor reflector. The semiconductor layer includes: an optical coupler to redirect the optical signal to and from the planarized surface; and an optical waveguide to convey the optical signal from the optical coupler. While assembling these chips, a height of the optical gain material is referenced against the planarized surface of the semiconductor layer, a height of the optical reflector is referenced against the planarized surface of the semiconductor layer, and the optical reflector is aligned with the optical coupler, so that the optical signal emanating from the optical gain material is reflected by the optical reflector and into the optical coupler.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: November 7, 2017
    Assignee: Oracle International Corporation
    Inventors: Ivan Shubin, Xuezhe Zheng, Jin Yao, Jin-Hyoung Lee, Jock T. Bovington, Shiyun Lin, Ashok V. Krishnamoorthy
  • Publication number: 20170294760
    Abstract: A hybrid optical source comprises an optical gain chip containing an optical gain material that provides an optical signal, and an optical reflector chip including an optical reflector. It also includes a semiconductor-on-insulator (SOI) chip, which comprises a semiconductor layer having a planarized surface facing the semiconductor reflector. The semiconductor layer includes: an optical coupler to redirect the optical signal to and from the planarized surface; and an optical waveguide to convey the optical signal from the optical coupler. While assembling these chips, a height of the optical gain material is referenced against the planarized surface of the semiconductor layer, a height of the optical reflector is referenced against the planarized surface of the semiconductor layer, and the optical reflector is aligned with the optical coupler, so that the optical signal emanating from the optical gain material is reflected by the optical reflector and into the optical coupler.
    Type: Application
    Filed: June 22, 2016
    Publication date: October 12, 2017
    Applicant: Oracle International Corporation
    Inventors: Ivan Shubin, Xuezhe Zheng, Jin Yao, Jin-Hyoung Lee, Jock T. Bovington, Shiyun Lin, Ashok V. Krishnamoorthy
  • Patent number: 9780528
    Abstract: A tunable laser includes a semiconductor optical amplifier (SOA) having a reflective end coupled to a shared reflector and an output end, which is coupled to a demultiplexer through an input waveguide. The demultiplexer comprises a set of Mach-Zehnder (MZ) lattice filters, which function as symmetric de-interleaving wavelength splitters, that are cascaded to form a binary tree that connects an input port, which carries multiple wavelength bands, to N wavelength-specific output ports that are coupled to a set of N reflectors. A set of variable optical attenuators (VOAs) is coupled to outputs of the MZ lattice filters in the binary tree, and is controllable to selectively add loss to the outputs, so that only a single favored wavelength band, which is associated with a favored reflector in the set of N reflectors, lases at any given time. An output waveguide is optically coupled to the lasing cavity.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: October 3, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ying Luo, Daniel Y. Lee, Ashok V. Krishnamoorthy
  • Patent number: 9780524
    Abstract: A tunable laser includes a reflective silicon optical amplifier (RSOA) with a reflective end and an interface end and an array of narrow-band reflectors, which each have a different center wavelength. It also includes a silicon-photonic optical switch, having an input port and N output ports that are coupled to a different narrow-band reflector in the array of narrow-band reflectors. The tunable laser also includes an optical waveguide coupled between the interface end of the RSOA and the input of the silicon-photonic optical switch. The frequency of this tunable laser can be tuned in discrete increments by selectively coupling the input port of the silicon-photonic optical switch to one of the N output ports, thereby causing the RSOA to form a lasing cavity with a selected narrow-band reflector coupled to the selected output port. The tunable laser also includes a laser output optically coupled to the lasing cavity.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 3, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Jin Yao, Ying Luo, Ashok V. Krishnamoorthy
  • Patent number: 9778493
    Abstract: A dual-ring-modulated laser includes a gain medium having a reflective end coupled to an associated gain-medium reflector and an output end, which is coupled to a reflector circuit through an input waveguide to form a lasing cavity. The reflector circuit comprises: a first ring modulator; a second ring modulator; and a shared waveguide that optically couples the first and second ring modulators together. The first and second ring modulators have resonance peaks that are tuned to be offset in alignment from each other to provide an effective reflectance having a flat-top response, which is aligned with an associated lasing cavity mode. The first and second ring modulators are driven in tandem based on the same electrical input signal, whereby the resonance peaks of the first and second ring modulators shift wavelengths in the same direction during modulation, and an effective reflectance stays within the flat-top wavelength range.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: October 3, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ashok V. Krishnamoorthy, Jock T. Bovington, Xuezhe Zheng, Ying Luo, Shiyun Lin
  • Patent number: 9766404
    Abstract: An integrated circuit that includes a wavelength-filter layer stack (which may include silicon oxynitride) and an optical substrate (such as a silicon-on-insulator platform) is described. During operation, an optical signal received from an optical fiber or an optical waveguide is wavelength filtered into a set of wavelength-filter optical waveguides by an optical multiplexer/demultiplexer (such as an Echelle grating and/or an array waveguide grating) in the wavelength-filter layer stack. Then, wavelength-filtered optical signals are optically coupled to the optical substrate, where they are received using photodetectors. Alternatively, modulators in the optical substrate modulate wavelength-filtered modulated optical signals, which are then optically coupled to the set of wavelength-filter optical waveguides in the wavelength-filter layer stack.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: September 19, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ying Luo, Xuezhe Zheng, Jin Yao, Ashok V. Krishnamoorthy
  • Patent number: 9768587
    Abstract: The disclosed embodiments provide a tunable laser that includes a set of M reflective silicon optical amplifiers (RSOAs) and a set of N narrow-band reflectors. It also includes a silicon-photonic optical switch, having M amplifier ports, which are coupled through a set of M optical waveguides to the set of M RSOAs, and N reflector ports, which are coupled to the set of N narrow-band reflectors. The tunable laser also includes a switching mechanism that facilitates coupling at least one selected amplifier port from the M amplifier ports with a selected reflector port from the N reflector ports, thereby causing an RSOA coupled to the selected amplifier port to form a lasing cavity with a narrow-band reflector coupled to the selected reflector port. The tunable laser also includes a laser output, which is optically coupled to the lasing cavity.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: September 19, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Jin Yao, Ying Luo, Ashok V. Krishnamoorthy
  • Publication number: 20170261772
    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, a semiconductor layer in an SOI platform may include a photonic crystal having a group velocity of light that is less than that of the semiconductor layer. Moreover, an optical modulator (such as a Mach-Zehnder interferometer) may be implemented in the photonic crystal with a vertical junction in the semiconductor layer. During operation of the optical modulator, an input optical signal may be split into two different optical signals that feed two optical waveguides, and then subsequently combined into an output optical signal. Furthermore, during operation, time-varying bias voltages may be applied across the vertical junction in the optical modulator using contacts defined along a lateral direction of the optical modulator.
    Type: Application
    Filed: May 31, 2017
    Publication date: September 14, 2017
    Applicant: Oracle International Corporation
    Inventors: Ying Luo, Shiyun Lin, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9759935
    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, a semiconductor layer in an SOI platform may include a photonic crystal having a group velocity of light that is less than that of the semiconductor layer. Moreover, an optical modulator (such as a Mach-Zehnder interferometer) may be implemented in the photonic crystal with a vertical junction in the semiconductor layer. During operation of the optical modulator, an input optical signal may be split into two different optical signals that feed two optical waveguides, and then subsequently combined into an output optical signal. Furthermore, during operation, time-varying bias voltages may be applied across the vertical junction in the optical modulator using contacts defined along a lateral direction of the optical modulator.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: September 12, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ying Luo, Shiyun Lin, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9748738
    Abstract: In a multiple-wavelength laser source, a multiple-mode laser outputs a set of wavelengths in a range of wavelengths onto an optical waveguide, where a spacing between adjacent wavelengths in the set of wavelengths is smaller than a width of channels in an optical link. Furthermore, a set of ring-resonator filters in the multiple-wavelength laser source, which are optically coupled to the optical waveguide, output corresponding subsets of the set of wavelengths for use in the optical link based on free spectral ranges and quality factors of the set of ring-resonator filters. These subsets may include one or more groups of wavelengths, with another spacing between adjacent groups of wavelengths that is larger than the width of the given channel in the optical link. In addition, the one or more groups of wavelengths may include one or more wavelengths, with the spacing between adjacent wavelengths in the given group of wavelengths.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: August 29, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ashok V. Krishnamoorthy, Xuezhe Zheng
  • Patent number: 9735542
    Abstract: An optical source is described. This optical source includes a semiconductor optical amplifier, with a semiconductor other than silicon, which provides a gain medium. In addition, a photonic chip, optically coupled to the semiconductor optical amplifier, includes: an optical waveguide that conveys the optical signal; and a pair of ring-resonator modulators that modulate the optical signal. Furthermore, the pair of ring-resonator modulators is included within an optical cavity in the optical source. For example, the optical cavity may be defined by a reflective coating on one edge of the semiconductor optical amplifier and a reflector on one end of the optical waveguide. Alternatively, the optical cavity may be defined by reflectors on ends of the optical waveguide.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: August 15, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Guoliang Li, Ashok V. Krishnamoorthy, Xuezhe Zheng, Ying Luo
  • Patent number: 9735989
    Abstract: The disclosed embodiments relate to the design of an equalizer that uses both cross-coupled cascodes and inductive peaking to reduce distortion in a signal received from a communication channel by attenuating lower frequencies and amplifying higher frequencies. At lower frequencies, when the effects of inductive impedance within the equalizer are negligible, the equalizer essentially functions as a traditional cascode amplifier that presents high gain. At higher frequencies, the increases in inductive impedances within the equalizer act to boost a gain of the equalizer.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: August 15, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Jingqiong Xie, Ashok V. Krishnamoorthy, Xuezhe Zheng, Jeffrey W. Denq, Kannan Raj
  • Patent number: 9733498
    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, the optical modulator may include a carrier-accumulation-type micro-disk resonator fabricated using optical waveguides having a composite structure. Moreover, the composite structure may embed a metal-oxide semiconductor capacitor in the disk resonator. For example, the composite structure may include polysilicon disposed on an oxide layer, which is disposed on a silicon layer in an SOI platform. The optical modulator may have high modulation efficiency and high-speed operation. In addition, the optical modulator may have a compact footprint with low power consumption.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: August 15, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ying Luo, Xuezhe Zheng, Shiyun Lin, Ashok V. Krishnamoorthy
  • Publication number: 20170223437
    Abstract: An optical receiver is described. Using silicon-photonic components that support a single polarization, the output of an optical receiver is independent of the polarization of an optical signal. In particular, using a polarization-diversity technique, the two orthogonal polarizations in a single-mode optical fiber are split in two and processed independently. For example, the two optical signals may be provided by a polarization-splitting grating coupler. Subsequently, a redistribution element provides mixtures of the two optical signals. Next, a wavelength channel in the two mixed optical signals is selected using a wavelength-selective filter (for example, using ring-resonator drop filters or an echelle grating) and converted into an electrical signal at an optical detector (such as a photodetector) to achieve polarization-independent operation.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 3, 2017
    Applicant: Oracle International Corporation
    Inventors: Daniel Y. Lee, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20170199327
    Abstract: An integrated circuit is described. This integrated circuit includes an optical waveguide defined in a semiconductor layer, and a dielectric optical waveguide disposed on the semiconductor layer and that overlaps a region of the optical waveguide. Moreover, the dielectric optical waveguide includes an optical device (such as a mirror) on a facet separating a first portion of the dielectric optical waveguide and a second portion of the dielectric optical waveguide. The facet may be at an angle relative to a plane of the dielectric optical waveguide and may include a metal layer. During operation, an optical signal conveyed by the optical waveguide is evanescent coupled to the dielectric optical waveguide. Then, the optical signal may be reflected by the optical device. For example, the angle of the facet may be 45°, so that the optical signal is reflected normal to the plane of the dielectric optical waveguide.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 13, 2017
    Applicant: Oracle International Corporation
    Inventors: Stevan S. Djordjevic, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20170199328
    Abstract: A multi-chip module (MCM) is described. This MCM includes a driver integrated circuit that includes electrical circuits, a photonic chip, an interposer, and an optical gain chip. The photonic chip may be implemented using a silicon-on-insulator technology, and may include an optical waveguide that conveys an optical signal and traces that are electrically coupled to the driver integrated circuit. Moreover, the interposer may be electrically coupled to the traces. Furthermore, the optical gain chip may include a III/V compound semiconductor (and, more generally, a semiconductor other than silicon), and may include a second optical waveguide that conveys the optical signal and that is vertically aligned with the optical waveguide relative to a top surface of the interposer. Additionally, the optical gain chip may be electrically coupled to the interposer.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Applicant: Oracle International Corporation
    Inventors: Ivan Shubin, Xuezhe Zheng, Jin Hyoung Lee, Ashok V. Krishnamoorthy
  • Patent number: 9698564
    Abstract: A multi-chip module (MCM) includes: an interposer, a photonic chip, an optical gain chip, and a waveguide-fiber connector. The photonic chip, which may be electrically coupled to the interposer, may be implemented using a silicon-on-insulator (SOI) technology, and may include an optical waveguide that conveys an optical signal. Moreover, the optical gain chip, which may be electrically coupled to the interposer, may include a III-V compound semiconductor, and may include a second optical waveguide that conveys the optical signal and that is vertically aligned with the optical waveguide relative to a top surface of the interposer. Furthermore, the waveguide-fiber connector may be mechanically coupled to the interposer, and remateably mechanically coupled to an optical fiber coupler that includes the optical fiber. The waveguide-fiber connector may convey the optical signal between the optical waveguide in the photonic chip and the optical fiber.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: July 4, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ivan Shubin, Xuezhe Zheng, Jin-Hyoung Lee, Ashok V. Krishnamoorthy
  • Patent number: 9696486
    Abstract: A photonic integrated circuit (PIC) is described. This PIC includes an inverse facet mirror on a silicon optical waveguide for optical proximity coupling between two silicon-on-insulator (SOI) chips placed face to face. Accurate mirror facets may be fabricated in etch pits using a silicon micro-machining technique, with wet etching of the silicon <110> facet at an angle of 45° when etched through the <100> surface. Moreover, by filling the etch pit with polycrystalline silicon or another filling material that has an index of refraction similar to silicon (such as a silicon-germanium alloy), a reflecting mirror with an accurate angle can be formed at the end of the silicon optical waveguide using: a metal coating, a dielectric coating, thermal oxidation, or selective silicon dry etching removal of one side of the etch pit to define a cavity.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: July 4, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ivan Shubin, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 9693124
    Abstract: A macro-switch is described. This macro-switch includes facing integrated circuits, one of which implements optical waveguides that convey optical signals, and the other which implements control logic, electrical switches and memory buffers at each of multiple switch sites. Moreover, the macro-switch has a fully connected topology between the switch sites. Furthermore, the memory buffers at each switch site provide packet buffering and congestion relief without causing undue scheduling/routing complexity. Consequently, the macro-switch can be scaled to an arbitrarily large switching matrix (i.e., an arbitrary number of switch sites and/or switching stages).
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: June 27, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Leick D. Robinson, Avadh Pratham Patel, Ashok V. Krishnamoorthy, Alan P. Wood