Patents by Inventor Atsuki Fukazawa

Atsuki Fukazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10435790
    Abstract: A method for depositing a film by plasma-enhanced subatmospheric-pressure atomic layer deposition (subatmospheric PEALD) is conducted using capacitively coupled parallel plate electrodes with a gap of 1 mm to 5 mm, wherein one cycle of subatmospheric PEALD includes: supplying a precursor in a pulse to the reaction chamber; continuously supplying a reactant to the reaction chamber; continuously supplying an inert gas to the reaction chamber; continuously controlling a pressure of the reaction chamber in a range of 15 kPa to 80 kPa; and applying RF power for glow discharge in a pulse to one of the parallel plate electrodes.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: October 8, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Atsuki Fukazawa, Masaru Zaitsu, Masaki Tokunaga, Hideaki Fukuda
  • Patent number: 10395919
    Abstract: According to the invention a method for filling one or more gaps created during manufacturing of a feature on a substrate is provided by providing the substrate in a reaction chamber and providing a deposition method. The deposition method comprises; providing an anisotropic plasma to bombard a bottom area of a surface of the one or more gaps with ions thereby creating adsorption sites at the bottom area; introducing a first reactant to the substrate; and, allowing the first reactant to react with the adsorption sites at the bottom area of the surface to fill the one or more gaps from the bottom area upwards.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: August 27, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Zaitsu Masaru, Atsuki Fukazawa
  • Patent number: 10395917
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: August 27, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Publication number: 20190249303
    Abstract: A chemical precursor and a method for depositing a silicon oxide film on a surface of a substrate within a reaction space by plasma-enhanced atomic layer deposition are disclosed. The chemical precursors may include a Si—O—Si skeleton or a Si—N—Si skeleton.
    Type: Application
    Filed: January 18, 2019
    Publication date: August 15, 2019
    Inventors: Aurélie Kuroda, Atsuki Fukazawa
  • Publication number: 20190189454
    Abstract: Examples of a method for manufacturing a semiconductor device include forming an initial film having a film thickness of 1 to 3 nm made of a metal or a metal nitride by applying plasma film formation with plasma power of 0.07 to 0.30 W/cm2 and an RF pulse width within a range of 0.1 to 1 sec, and forming, after forming the initial film, a bulk film made of a metal or metal nitride on the initial film by applying plasma film formation with plasma power higher than the plasma power when the initial film is formed.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Applicant: ASM IP Holding B.V.
    Inventor: Atsuki Fukazawa
  • Publication number: 20190172708
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: November 15, 2018
    Publication date: June 6, 2019
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 10262865
    Abstract: An example method for manufacturing a semiconductor device includes forming a nitride, carbide, or metal film on a substrate in a chamber using PE-ALD, Pulse-PE-CVD or PE-CVD, purging an interior of the chamber, forming an oxide film on the substrate in the chamber using PE-ALD, Pulse-PE-CVD or PE-CVD, and supplying a reducing gas into the chamber to create a reduction atmosphere and purging the interior of the chamber. The forming of the nitride film, carbide, or metal, purging, forming an oxide film, and supplying the reducing gas may be repeated a plurality of times.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: April 16, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventors: Atsuki Fukazawa, Toshihisa Nozawa
  • Publication number: 20190057857
    Abstract: A method for fabricating a layer structure in a trench includes: simultaneously forming a dielectric film containing a Si—N bond on an upper surface, and a bottom surface and sidewalls of the trench, wherein a top/bottom portion of the film formed on the upper surface and the bottom surface and a sidewall portion of the film formed on the sidewalls are given different chemical resistance properties by bombardment of a plasma excited by applying voltage between two electrodes between which the substrate is place in parallel to the two electrodes; and substantially removing the sidewall portion of the film by wet etching which removes the sidewall portion of the film more predominantly than the top/bottom portion according to the different chemical resistance properties.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: Dai Ishikawa, Atsuki Fukazawa, Eiichiro Shiba, Shinya Ueda, Taishi Ebisudani, SeungJu Chun, YongMin Yoo, YoonKi Min, SeYong Kim, JongWan Choi
  • Patent number: 10186420
    Abstract: Methods for depositing silicon-containing thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including one or more deposition cycles including contacting the substrate with a silicon precursor and a second reactant that does not include oxygen. In some embodiments the methods a deposition cycle can also including contacting the substrate with a carbon precursor.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: January 22, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventor: Atsuki Fukazawa
  • Patent number: 10179947
    Abstract: A method for forming a film on a patterned surface of a substrate by atomic layer deposition (ALD) processing includes: adsorbing onto a patterned surface a first precursor containing silicon or metal in its molecule; adsorbing onto the first-precursor-adsorbed surface a second precursor containing no silicon or metal in its molecule; exposing the second-precursor-adsorbed surface to an excited reactant to oxidize, nitride, or carbonize the precursors adsorbed on the surface of the substrate; and repeating the above cycle to form a film on the patterned surface of the substrate.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 15, 2019
    Assignee: ASM IP Holding B.V.
    Inventor: Atsuki Fukazawa
  • Publication number: 20180366314
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Application
    Filed: February 22, 2018
    Publication date: December 20, 2018
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Patent number: 10147600
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: December 4, 2018
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20180301342
    Abstract: An example method for manufacturing a semiconductor device includes forming a nitride, carbide, or metal film on a substrate in a chamber using PE-ALD, Pulse-PE-CVD or PE-CVD, purging an interior of the chamber, forming an oxide film on the substrate in the chamber using PE-ALD, Pulse-PE-CVD or PE-CVD, and supplying a reducing gas into the chamber to create a reduction atmosphere and purging the interior of the chamber. The forming of the nitride film, carbide, or metal, purging, forming an oxide film, and supplying the reducing gas may be repeated a plurality of times.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 18, 2018
    Applicant: ASM IP Holding B.V.
    Inventors: Atsuki Fukazawa, Toshihisa Nozawa
  • Publication number: 20180223429
    Abstract: A method for depositing an oxide film on a substrate by thermal ALD and PEALD, includes: providing a substrate in a reaction chamber; depositing a first oxide film on the substrate by thermal ALD in the reaction chamber; and without breaking a vacuum, continuously depositing a second oxide film on the first oxide film by PEALD in the reaction chamber.
    Type: Application
    Filed: January 24, 2018
    Publication date: August 9, 2018
    Inventors: Atsuki Fukazawa, Hideaki Fukuda
  • Publication number: 20180211834
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 26, 2018
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20180151355
    Abstract: Methods for depositing silicon-containing thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including one or more deposition cycles including contacting the substrate with a silicon precursor and a second reactant that does not include oxygen. In some embodiments the methods a deposition cycle can also including contacting the substrate with a carbon precursor.
    Type: Application
    Filed: October 18, 2017
    Publication date: May 31, 2018
    Inventor: Atsuki Fukazawa
  • Publication number: 20180119283
    Abstract: A method for depositing a film by plasma-enhanced subatmospheric-pressure atomic layer deposition (subatmospheric PEALD) is conducted using capacitively coupled parallel plate electrodes with a gap of 1 mm to 5 mm, wherein one cycle of subatmospheric PEALD includes: supplying a precursor in a pulse to the reaction chamber; continuously supplying a reactant to the reaction chamber; continuously supplying an inert gas to the reaction chamber; continuously controlling a pressure of the reaction chamber in a range of 15 kPa to 80 kPa; and applying RF power for glow discharge in a pulse to one of the parallel plate electrodes.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 3, 2018
    Inventors: Atsuki Fukazawa, Masaru Zaitsu, Masaki Tokunaga, Hideaki Fukuda
  • Patent number: 9905416
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 27, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Publication number: 20180033616
    Abstract: According to the invention a method for filling one or more gaps created during manufacturing of a feature on a substrate is provided by providing the substrate in a reaction chamber and providing a deposition method. The deposition method comprises; providing an anisotropic plasma to bombard a bottom area of a surface of the one or more gaps with ions thereby creating adsorption sites at the bottom area; introducing a first reactant to the substrate; and, allowing the first reactant to react with the adsorption sites at the bottom area of the surface to fill the one or more gaps from the bottom area upwards.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 1, 2018
    Inventors: Zaitsu Masaru, Atsuki Fukazawa
  • Patent number: 9875893
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: January 23, 2018
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba