Patents by Inventor Atsuo Isobe

Atsuo Isobe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8253140
    Abstract: To provide a liquid crystal display device having high quality display by obtaining a high aperture ratio while securing a sufficient storage capacitor (Cs), and at the same time, by dispersing a load (a pixel writing-in electric current) of a capacitor wiring in a timely manner to effectively reduce the load. A scanning line is formed on a different layer from a gate electrode and the capacitor wiring is arranged so as to be parallel with a signal line. Each pixel is connected to the individually independent capacitor wiring via a dielectric. Therefore, variations in the electric potential of the capacitor wiring caused by a writing-in electric current of a neighboring pixel can be avoided, whereby obtaining satisfactory display images.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 28, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroshi Shibata, Atsuo Isobe
  • Publication number: 20120214259
    Abstract: Experience shows that, in a material containing oxygen as a main component, an excess or deficiency of trace amounts of oxygen with respect to a stoichiometric composition, or the like affects properties of the material. An oxygen diffusion evaluation method of an oxide film stacked body includes the steps of: measuring a quantitative value of one of oxygen isotopes of a substrate including a first oxide film and a second oxide film which has an existence proportion of an oxygen isotope different from an existence proportion of an oxygen isotope in the first oxide film in a depth direction, by secondary ion mass spectrometry; and evaluating the one of the oxygen isotopes diffused from the first oxide film to the second oxide film.
    Type: Application
    Filed: August 19, 2011
    Publication date: August 23, 2012
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Okazaki, Keitaro Imai, Atsuo Isobe, Shunpei Yamazaki
  • Publication number: 20120187397
    Abstract: A semiconductor device which includes an oxide semiconductor and has favorable electrical characteristics is provided. In the semiconductor device, an oxide semiconductor film and an insulating film are formed over a substrate. Side surfaces of the oxide semiconductor film are in contact with the insulating film. The oxide semiconductor film includes a channel formation region and regions containing a dopant between which the channel formation region is sandwiched. A gate insulating film is formed on and in contact with the oxide semiconductor film. A gate electrode with sidewall insulating films is formed over the gate insulating film. A source electrode and a drain electrode are formed in contact with the oxide semiconductor film and the insulating film.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 26, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Atsuo ISOBE, Toshihiko SAITO, Takehisa HATANO, Hideomi SUZAWA, Shinya SASAGAWA, Junichi KOEZUKA, Yuichi SATO, Shinji OHNO
  • Publication number: 20120146144
    Abstract: A semiconductor device having a highly responsive thin film transistor (TFT) with low subthreshold swing and suppressed decrease in the on-state current and a manufacturing method thereof are demonstrated. The TFT of the present invention is characterized by its semiconductor layer where the thickness of the source region or the drain region is larger than that of the channel formation region. Manufacture of the TFT is readily achieved by the formation of an amorphous semiconductor layer on a projection portion and a depression portion, which is followed by subjecting the melting process of the semiconductor layer, resulting in the formation of a crystalline semiconductor layer having different thicknesses. Selective addition of impurity to the thick portion of the semiconductor layer provides a semiconductor layer in which the channel formation region is thinner than the source or drain region.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Atsuo ISOBE, Hiromichi GODO
  • Patent number: 8143118
    Abstract: A semiconductor device having a highly responsive thin film transistor (TFT) with low subthreshold swing and suppressed decrease in the on-state current and a manufacturing method thereof are demonstrated. The TFT of the present invention is characterized by its semiconductor layer where the thickness of the source region or the drain region is larger than that of the channel formation region. Manufacture of the TFT is readily achieved by the formation of an amorphous semiconductor layer on a projection portion and a depression portion, which is followed by subjecting the melting process of the semiconductor layer, resulting in the formation of a crystalline semiconductor layer having different thicknesses. Selective addition of impurity to the thick portion of the semiconductor layer provides a semiconductor layer in which the channel formation region is thinner than the source or drain region.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: March 27, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Atsuo Isobe, Hiromichi Godo
  • Publication number: 20120049189
    Abstract: It is an object to manufacture a semiconductor device in which a transistor including an oxide semiconductor has normally-off characteristics, small fluctuation in electric characteristics, and high reliability. First, first heat treatment is performed on a substrate, a base insulating layer is formed over the substrate, an oxide semiconductor layer is formed over the base insulating layer, and the step of performing the first heat treatment to the step of forming the oxide semiconductor layer are performed without exposure to the air. Next, after the oxide semiconductor layer is formed, second heat treatment is performed. An insulating layer from which oxygen is released by heating is used as the base insulating layer.
    Type: Application
    Filed: July 22, 2011
    Publication date: March 1, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Toshinari SASAKI, Hitomi SATO, Kosei NODA, Yuta ENDO, Mizuho IKARASHI, Keitaro IMAI, Atsuo ISOBE, Yutaka OKAZAKI
  • Patent number: 8115278
    Abstract: A semiconductor element formed over the same substrate as a TFT, includes a semiconductor film having an impurity region; an insulating film formed over the semiconductor film; an electrode divided into a plurality of parts over the insulating film by spacing a distance a in a first direction (channel width direction); an insulator with a width b formed to be in contact with a side wall of the electrodes and an insulator formed in a region between the electrodes divided into a plurality of parts; a silicide layer formed over part of the surface of the impurity region; and characteristics of the TFT are evaluated by measuring resistance of the semiconductor film of the semiconductor element.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsuo Isobe
  • Publication number: 20120032236
    Abstract: An object is to realize high performance and low power consumption in a semiconductor device having an SOI structure. In addition, another object is to provide a semiconductor device having a high performance semiconductor element which is more highly integrated. A semiconductor device is such that a plurality of n-channel field-effect transistors and p-channel field-effect transistors are stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. By controlling a distortion caused to a semiconductor layer due to an insulating film having a stress, a plane orientation of the semiconductor layer, and a crystal axis in a channel length direction, difference in mobility between the n-channel field-effect transistor and the p-channel field-effect transistor can be reduced, whereby current driving capabilities and response speeds of the n-channel field-effect transistor and the p-channel field-effect can be comparable.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Atsuo ISOBE, Hiromichi GODO, Yutaka OKAZAKI
  • Publication number: 20120018808
    Abstract: A semiconductor device and a method for manufacturing a semiconductor device are provided. A semiconductor device comprises a first single-crystal semiconductor layer including a first channel formation region and a first impurity region over a substrate having an insulating surface, a first gate insulating layer over the first single-crystal semiconductor layer, a gate electrode over the first gate insulating layer, a first interlayer insulating layer over the first gate insulating layer, a second gate insulating layer over the gate electrode and the first interlayer insulating layer, and a second single-crystal semiconductor layer including a second channel formation region and a second impurity region over the second gate insulating layer. The first channel formation region, the gate electrode, and the second channel formation region are overlapped with each other.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 26, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Atsuo ISOBE
  • Publication number: 20120021588
    Abstract: One object is to provide excellent electric characteristics of an end portion of a single crystal semiconductor layer having a tapered shape. An embrittled region is formed in a single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with accelerated ions. Then, the single crystal semiconductor substrate and a base substrate are bonded to each other with an insulating film interposed therebetween and a first single crystal semiconductor layer is formed over the base substrate with the insulating film interposed therebetween by separating the single crystal semiconductor substrate at the embrittled region. After that, a second single crystal semiconductor layer having a tapered end portion is formed by performing dry etching on the first single crystal semiconductor layer, and etching is performed on the end portion of the second single crystal semiconductor layer in a state where a potential on the base substrate side is a ground potential.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 26, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shinya HASEGAWA, Atsuo ISOBE, Motomu KURATA
  • Publication number: 20110297928
    Abstract: The semiconductor device is provided in which a plurality of memory cells each including a first transistor, a second transistor, and a capacitor is arranged in matrix and a wiring (also referred to as a bit line) for connecting one of the memory cells and another one of the memory cells and a source or drain region in the first transistor are electrically connected through a conductive layer and a source or drain electrode in the second transistor provided therebetween. With this structure, the number of wirings can be reduced in comparison with a structure in which the source or drain electrode in the first transistor and the source or drain electrode in the second transistor are connected to different wirings. Thus, the integration degree of a semiconductor device can be increased.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 8, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Atsuo ISOBE, Yoshinori IEDA, Keitaro IMAI, Kiyoshi KATO, Yuto YAKUBO, Yuki HATA
  • Publication number: 20110298027
    Abstract: It is an object to provide a semiconductor device with a novel structure in which stored data can be held even when power is not supplied and there is no limitation on the number of writings. A semiconductor device includes a second transistor and a capacitor provided over a first transistor. A source electrode of the second transistor which is in contact with a gate electrode of the first transistor is formed using a material having etching selectivity with respect to the gate electrode. By forming the source electrode of the second transistor using a material having etching selectivity with respect to the gate electrode of the first transistor, a margin in layout can be reduced, so that the degree of integration of the semiconductor device can be increased.
    Type: Application
    Filed: May 25, 2011
    Publication date: December 8, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Atsuo Isobe, Yoshinori Ieda, Kiyoshi Kato, Yuto Yakubo, Yuki Hata
  • Patent number: 8049253
    Abstract: A semiconductor device and a method for manufacturing a semiconductor device are provided. A semiconductor device comprises a first single-crystal semiconductor layer including a first channel formation region and a first impurity region over a substrate having an insulating surface, a first gate insulating layer over the first single-crystal semiconductor layer, a gate electrode over the first gate insulating layer, a first interlayer insulating layer over the first gate insulating layer, a second gate insulating layer over the gate electrode and the first interlayer insulating layer, and a second single-crystal semiconductor layer including a second channel formation region and a second impurity region over the second gate insulating layer. The first channel formation region, the gate electrode, and the second channel formation region are overlapped with each other.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: November 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsuo Isobe
  • Patent number: 8048749
    Abstract: A method for manufacturing a semiconductor device, by which a bottom gate thin film transistor that has an improved S value and a channel forming region with a smaller thickness than that of a source region and a drain region can be manufactured in a simple process. An island-like conductive film is formed over a surface of an insulating substrate in a portion corresponding to a channel forming region, and is covered with an insulating film to form a projection portion. After an amorphous semiconductor film is deposited to cover the projection portion, the amorphous semiconductor film is irradiated with laser light so as to be melted and crystallized. Part of the melted semiconductor over the projection portion flows into regions adjacent to both sides of the projection portion, which results in reduction in thickness of the semiconductor film over the projection portion (channel forming region).
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: November 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomokazu Yokoi, Atsuo Isobe, Motomu Kurata, Takeshi Shichi, Daisuke Ohgarane, Takashi Shingu
  • Patent number: 8044464
    Abstract: An object is to realize high performance and low power consumption in a semiconductor device having an SOI structure. In addition, another object is to provide a semiconductor device having a high performance semiconductor element which is more highly integrated. A semiconductor device is such that a plurality of n-channel field-effect transistors and p-channel field-effect transistors are stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. By controlling a distortion caused to a semiconductor layer due to an insulating film having a stress, a plane orientation of the semiconductor layer, and a crystal axis in a channel length direction, difference in mobility between the n-channel field-effect transistor and the p-channel field-effect transistor can be reduced, whereby current driving capabilities and response speeds of the n-channel field-effect transistor and the p-channel field-effect can be comparable.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsuo Isobe, Hiromichi Godo, Yutaka Okazaki
  • Patent number: 8030193
    Abstract: To fabricate a Schottky barrier diode in which a decrease in on current due to parasitic resistance is suppressed, variations in on current are suppressed, and an increase in off current is suppressed. The fabricating method includes the steps of forming an island-shape semiconductor film; doping the island-shape semiconductor film with a first impurity element to form a first impurity region; forming an insulating film so as to cover the island-shape semiconductor film; etching the insulating film to form a first opening and a second opening that partly expose the first impurity region; forming a mask over the insulating film so as to cover the first opening and expose the second opening; doping the first impurity region with a second impurity element to form a second impurity region; and forming a first wiring in contact with the first impurity region exposed at the first opening, and forming a second wiring in contact with the second impurity region exposed at the second opening.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: October 4, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Suguru Ozawa
  • Patent number: 8008140
    Abstract: It is an object of the present invention to manufacture a TFT having a small-sized LDD region in a process with a few processing step and to manufacture TFTs each having a structure depending on each circuit separately. According to the present invention, a gate electrode is a multilayer, and a hat-shaped gate electrode is formed by having the longer gate length of a lower-layer gate electrode than that of an upper-layer gate electrode. At this time, only the upper-layer gate electrode is etched by using a resist recess width to form the hat-shaped gate electrode. Accordingly, an LDD region can be formed also in a fine TFT; thus, TFTs having a structure depending on each circuit can be manufactured separately.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: August 30, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Atsuo Isobe, Satoru Saito
  • Patent number: 7982250
    Abstract: A semiconductor device is demonstrated in which a plurality of field-effect transistors is stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. Each of the plurality of filed-effect transistors has a semiconductor layer which is prepared by a process including separation of the semiconductor layer from a semiconductor substrate followed by bonding thereof over the substrate. Each of the plurality of field-effect transistors is covered with an insulating film which provides distortion of the semiconductor layer. Furthermore, the crystal axis of the semiconductor layer, which is parallel to the crystal plane thereof, is set to a channel length direction of the semiconductor layer, which enables production of the semiconductor device with high performance and low power consumption having an SOI structure.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 19, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsuo Isobe, Hiromichi Godo, Yutaka Okazaki
  • Patent number: 7982267
    Abstract: To provide a liquid crystal display device having high quality display by obtaining a high aperture ratio while securing a sufficient storage capacitor (Cs), and at the same time, by dispersing a load (a pixel writing-in electric current) of a capacitor wiring in a timely manner to effectively reduce the load. A scanning line is formed on a different layer from a gate electrode and the capacitor wiring is arranged so as to be parallel with a signal line. Each pixel is connected to the individually independent capacitor wiring via a dielectric. Therefore, variations in the electric potential of the capacitor wiring caused by a writing-in electric current of a neighboring pixel can be avoided, whereby obtaining satisfactory display images.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: July 19, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroshi Shibata, Atsuo Isobe
  • Patent number: 7977680
    Abstract: In a semiconductor device having a substrate which has a metal surface, an insulating film which is formed on the substrate having the metal surface, and a pixel unit which is formed on the insulating film; the pixel unit includes a TFT, and wiring lines connected with the TFT, and a storage capacitor is constituted by the substrate (11) having the metal surface, the insulating film (12), and the wiring line (21). As the insulating film is thinner, and as the area of a region where the insulating film and the wiring line lie in contact is larger, the storage capacitor is endowed with a larger capacity.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: July 12, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Arao, Atsuo Isobe, Toru Takayama