Patents by Inventor Balasubramanian Pranatharthiharan

Balasubramanian Pranatharthiharan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11011429
    Abstract: Semiconductor structures and methods of forming such structures are disclosed. In an embodiment, the semiconductor structure comprises a substrate, a dielectric layer, and a plurality of gates, including a first gate and a pair of adjacent gates. The method comprises forming gate caps on the adjacent gates, including etching portions of the gate electrodes in the adjacent gates to recess the gate electrodes therein, and forming the caps above the recessed gate electrodes. Conductive metal trenches are formed in the dielectric layer, on the sides of the first gate; and after forming the trenches, a contact is formed over the gate electrode of the first gate and over and on one of the conductive trenches. In embodiments, the contact is a gate contact, and in other embodiments, the contact is a non-gate contact.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: May 18, 2021
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Soon-Cheon Seo, Charan V. Surisetty
  • Patent number: 11004750
    Abstract: Methods for forming semiconductor devices are disclosed including forming a semiconductor structure having a semiconductor substrate containing two or more fins. The method includes etching a first optical planarization layer on the semiconductor structure exposing a top surface of each of a gate spacer, a gate cap layer and a portion of a source/drain contact adjacent to the exposed gate spacer to form a first gate contact opening. The method further includes depositing a sacrificial place-holder material in the first gate contact opening. The method further includes removing the first optical planarization layer. The method further includes recessing a first conductive material.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: May 11, 2021
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Chanro Park, Balasubramanian Pranatharthiharan, Nicolas Loubet
  • Patent number: 10998234
    Abstract: Embodiments of the present invention are directed to a method that prevents punch-through of a bottom isolation layer and improves the quality of the source/drain epitaxial growth in a nanosheet semiconductor structure. In a non-limiting embodiment of the invention, a bottom isolation structure is formed over a substrate. The bottom isolation structure includes a tri-layer stack in a first region of the substrate and a bi-layer stack in a second region of the substrate. A nanosheet stack is formed over the bottom isolation structure in the first region of the substrate. A gate is formed over a channel region of the nanosheet stack.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruilong Xie, Veeraraghavan Basker, Nicolas Loubet, Balasubramanian Pranatharthiharan
  • Patent number: 10985260
    Abstract: A method for forming self-aligned contacts includes patterning a mask between fin regions of a semiconductor device, etching a cut region through a first dielectric layer between the fin regions down to a substrate and filling the cut region with a first material, which is selectively etchable relative to the first dielectric layer. The first dielectric layer is isotropically etched to reveal source and drain regions in the fin regions to form trenches in the first material where the source and drain regions are accessible. The isotropic etching is super selective to remove the first dielectric layer relative to the first material and relative to gate structures disposed between the source and drain regions. Metal is deposited in the trenches to form silicide contacts to the source and drain regions.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: April 20, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew M. Greene, Balasubramanian Pranatharthiharan, Ruilong Xie
  • Patent number: 10978343
    Abstract: An interconnect structure includes an interlayer dielectric (ILD) having a cavity extending therethrough along a first direction. A first electrically conductive strip is formed on a substrate and within the cavity. The first electrically conductive strip extends along the first direction and across an upper surface of the substrate. A second electrically conductive strip is on an upper surface of the ILD and extends along a second direction opposite the first direction. A fully aligned via (FAV) extends between the first and second electrically conductive strips such that all sides of the FAV are co-planar with opposing sides of the first electrically conductive strip and opposing sides of the second electrically conductive strip thereby providing a FAV that is fully aligned with the first electrically conductive strip and the second electrically conductive strip.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: April 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chanro Park, Nicholas Anthony Lanzillo, Christopher J. Penny, Lawrence A. Clevenger, Balasubramanian Pranatharthiharan
  • Publication number: 20210082770
    Abstract: Methods for forming semiconductor devices are disclosed including forming a semiconductor structure having a semiconductor substrate containing two or more fins. The method includes etching a first optical planarization layer on the semiconductor structure exposing a top surface of each of a gate spacer, a gate cap layer and a portion of a source/drain contact adjacent to the exposed gate spacer to form a first gate contact opening. The method further includes depositing a sacrificial place-holder material in the first gate contact opening. The method further includes removing the first optical planarization layer. The method further includes recessing a first conductive material.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Ruilong Xie, Chanro Park, Balasubramanian Pranatharthiharan, Nicolas Loubet
  • Patent number: 10937961
    Abstract: A Phase-change-memory (PCM) cell and method of forming the PCM are provided. In an illustrative embodiment, a method of forming a PCM cell includes forming a first layer of a first germanium-antimony-tellurium (GST) type material over at least a portion of the bottom and sides of a pore through a dielectric layer of low dielectric material to a bottom electrode. The method also includes forming a second layer of a second GST type material over the first GST type material along the bottom and sides of the pore over the bottom electrode. The first GST type material is different from the second GST type material.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Myung-Hee Na, Nicole Saulnier, Balasubramanian Pranatharthiharan
  • Patent number: 10937861
    Abstract: A method of forming a semiconductor structure includes forming a first middle-of-line (MOL) oxide layer and a second MOL oxide layer in the semiconductor structure. The first MOL oxide layer including multiple gate stacks formed on a substrate, and each gate stack of the gate stacks including a source/drain junction. A first nitride layer is formed over a silicide in the first MOL oxide layer. A second nitride layer is formed. Trenches are formed through the second nitride layer down to the source/drain junctions. A nitride cap of the plurality of gate stacks is selectively recessed. At least one self-aligned contact area (CA) element is formed within the first nitride layer. The first MOL oxide layer is selectively recessed. An air-gap oxide layer is deposited. The air gap oxide layer is reduced to the at least one self-aligned CA element and the first nitride layer.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: March 2, 2021
    Assignee: Tessera, Inc.
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Soon-Cheon Seo, Charan V. V. S. Surisetty
  • Publication number: 20210050260
    Abstract: An interconnect structure includes an interlayer dielectric (ILD) having a cavity extending therethrough along a first direction. A first electrically conductive strip is formed on a substrate and within the cavity. The first electrically conductive strip extends along the first direction and across an upper surface of the substrate. A second electrically conductive strip is on an upper surface of the ILD and extends along a second direction opposite the first direction. A fully aligned via (FAV) extends between the first and second electrically conductive strips such that all sides of the FAV are co-planar with opposing sides of the first electrically conductive strip and opposing sides of the second electrically conductive strip thereby providing a FAV that is fully aligned with the first electrically conductive strip and the second electrically conductive strip.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Chanro Park, Nicholas Anthony Lanzillo, Christopher J. Penny, Lawrence A. Clevenger, Balasubramanian Pranatharthiharan
  • Patent number: 10923471
    Abstract: The present invention relates generally to semiconductors, and more particularly, to a structure and method of minimizing shorting between epitaxial regions in small pitch fin field effect transistors (FinFETs). In an embodiment, a dielectric region may be formed in a middle portion of a gate structure. The gate structure be formed using a gate replacement process, and may cover a middle portion of a first fin group, a middle portion of a second fin group and an intermediate region of the substrate between the first fin group and the second fin group. The dielectric region may be surrounded by the gate structure in the intermediate region. The gate structure and the dielectric region may physically separate epitaxial regions formed on the first fin group and the second fin group from one another.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: February 16, 2021
    Assignee: Tessera, Inc.
    Inventors: Kangguo Cheng, Balasubramanian Pranatharthiharan, Alexander Reznicek, Charan V. Surisetty
  • Patent number: 10916478
    Abstract: In a self-aligned fin cut process for fabricating integrated circuits, a sacrificial gate or an epitaxially-formed source/drain region is used as an etch mask in conjunction with a fin cut etch step to remove unwanted portions of the fins. The process eliminates use of a lithographically-defined etch mask to cut the fins, which enables precise and accurate alignment of the fin cut.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 9, 2021
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Lei L. Zhuang, Balasubramanian Pranatharthiharan, Lars Liebmann, Ruilong Xie, Terence Hook
  • Patent number: 10896972
    Abstract: Embodiments of the invention are directed to a method and resulting structures for a semiconductor device having self-aligned contacts. In a non-limiting embodiment of the invention, a semiconductor fin is formed vertically extending from a bottom source/drain region of a substrate. A conductive gate is formed over a channel region of the semiconductor fin. A top source/drain region is formed on a surface of the semiconductor fin and a top metallization layer is formed on the top source/drain region. A dielectric cap is formed over the top metallization layer.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Steven Bentley, Su Chen Fan, Balasubramanian Pranatharthiharan, Junli Wang, Ruilong Xie
  • Publication number: 20200402860
    Abstract: Semiconductor structures and methods of forming such structures are disclosed. In an embodiment, the semiconductor structure comprises a substrate, a dielectric layer, and a plurality of gates, including a first gate and a pair of adjacent gates. The method comprises forming gate caps on the adjacent gates, including etching portions of the gate electrodes in the adjacent gates to recess the gate electrodes therein, and forming the caps above the recessed gate electrodes. Conductive metal trenches are formed in the dielectric layer, on the sides of the first gate; and after forming the trenches, a contact is formed over the gate electrode of the first gate and over and on one of the conductive trenches. In embodiments, the contact is a gate contact, and in other embodiments, the contact is a non-gate contact.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Soon-Cheon Seo, Charan V. Surisetty
  • Publication number: 20200395537
    Abstract: A method is presented for reducing a reset current for a phase change memory (PCM). The method includes forming a bottom electrode, constructing a PCM cell structure including a plurality of phase change memory layers and a plurality of heat transfer layers, wherein the plurality of phase change memory layers are assembled in an alternating configuration with respect to the plurality of heat transfer layers, and forming a top electrode over the PCM cell structure. The plurality of phase change memory layers are arranged perpendicular to the top and bottom electrodes. Additionally, airgaps are defined adjacent the PCM cell structure.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 17, 2020
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Kevin W. Brew, Wei Wang
  • Publication number: 20200365687
    Abstract: Embodiments of the present invention are directed to a method that prevents punch-through of a bottom isolation layer and improves the quality of the source/drain epitaxial growth in a nanosheet semiconductor structure. In a non-limiting embodiment of the invention, a bottom isolation structure is formed over a substrate. The bottom isolation structure includes a tri-layer stack in a first region of the substrate and a bi-layer stack in a second region of the substrate. A nanosheet stack is formed over the bottom isolation structure in the first region of the substrate. A gate is formed over a channel region of the nanosheet stack.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 19, 2020
    Inventors: Ruilong Xie, Veeraraghavan Basker, Nicolas Loubet, Balasubramanian Pranatharthiharan
  • Patent number: 10840354
    Abstract: A vertical transport fin field effect transistor (VT FinFET), including one or more vertical fins on a surface of a substrate, an L-shaped or U-shaped spacer trough on the substrate adjacent to at least one of the one or more vertical fins, and a gate dielectric layer on the sidewalls of the at least one of the one or more vertical fins and the L-shaped or U-shaped spacer trough.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Thamarai S. Devarajan, Balasubramanian Pranatharthiharan, Sanjay C. Mehta, Muthumanickam Sankarapandian
  • Publication number: 20200357994
    Abstract: A method is presented for constructing a three-dimensional (3D) stack phase change memory (PCM) device. The method includes forming a plurality of stack layers over a plurality of conductive lines, the plurality of conductive lines formed within trenches of an inter-layer dielectric (ILD), forming isolation trenches extending through the plurality of stack layers, etching the plurality of stack layers to define an opening, filling the opening with at least a phase change material, and constructing vias to the plurality of conductive lines.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 12, 2020
    Inventors: Wei Wang, Balasubramanian Pranatharthiharan, Injo Ok, Kevin W. Brew
  • Patent number: 10833269
    Abstract: A method is presented for constructing a three-dimensional (3D) stack phase change memory (PCM) device. The method includes forming a plurality of stack layers over a plurality of conductive lines, the plurality of conductive lines formed within trenches of an inter-layer dielectric (ILD), forming isolation trenches extending through the plurality of stack layers, etching the plurality of stack layers to define an opening, filling the opening with at least a phase change material, and constructing vias to the plurality of conductive lines.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wei Wang, Balasubramanian Pranatharthiharan, Injo Ok, Kevin W. Brew
  • Patent number: 10832964
    Abstract: A semiconductor structure is disclosed including a semiconductor substrate having two or more fins. The semiconductor structure includes a recessed gate structure having opposing sidewalls located over one of the fins. The semiconductor structure includes a gate spacer disposed on the opposing sidewalls of the recessed gate structure. The semiconductor structure includes a source/drain region disposed between adjacent gate spacers. The semiconductor structure includes a first conductive material disposed on the source/drain region and an interlevel dielectric layer disposed on a top surface of the semiconductor structure defining an opening therein to an exposed top surface of the first conductive material. A width of an upper portion of the opening is greater than the width of the lower portion of the opening. The lower portion of opening is aligned with the first conductive material. The semiconductor structure includes a second conductive material disposed in the opening.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporatior
    Inventors: Ruilong Xie, Balasubramanian Pranatharthiharan, Chanro Park, Nicolas Loubet
  • Patent number: 10833267
    Abstract: A self-align metal contact for a phase control memory (PCM) element is provided that mitigates unwanted residual tantalum nitride (TaN) particles that would otherwise remain after patterning a TaN surface using an RIE process.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Myung-Hee Na, Nicole Saulnier, Balasubramanian Pranatharthiharan