Patents by Inventor Bamdad Bahar

Bamdad Bahar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12388103
    Abstract: An anion exchange polymer includes aryl ether linkage free polyarylenes having aromatic/polyaromatic rings in polymer backbone and a tethered alkyl quaternary ammonium hydroxide side groups. This anion exchange polymer may be utilized in an anion exchange process and may be made into a thin anion transfer membrane. An ion transfer membrane may be mechanically reinforced having one or more layers of functional polymer based on a terphenyl backbone with quaternary ammonium functional groups and an inert porous scaffold material for reinforcement. An anion exchange membrane may have multilayers of anion exchange polymers which each containing varying types of backbones, varying degrees of functionalization, or varying functional groups to reduce ammonia crossover through the membrane.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: August 12, 2025
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Taoli Gu
  • Patent number: 12383872
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 BiPhenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Grant
    Filed: March 4, 2024
    Date of Patent: August 12, 2025
    Inventors: Bamdad Bahar, Chulsung Bae
  • Patent number: 12385676
    Abstract: A heat exchanger incorporates a metal hydride heat exchanger and mitigates the fluid mixing process, and thus greatly improves the heat transfer efficiency and heat recovery processes. The metal hydride heat exchanger has a container for the metal hydride that has a large aspect ratio. A plurality of high aspect container for the metal hydride may be coupled with a manifold.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: August 12, 2025
    Assignee: FFI IONIX IP, INC
    Inventors: Bamdad Bahar, Peter Mark Golben, William Parmelee
  • Patent number: 12378682
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: August 5, 2025
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20250243310
    Abstract: An anion exchange branched co-polymer includes poly(aryl) and a branched compound and quinuclininuium side chains. The co-polymer may include xanthene or bibenzofuran. The anion exchange branched co-polymer may be more durable and have less creep and may have a higher ion exchange capacity (IEC) due to the structure and because some of the side chains may have multiple functional sites. The co-polymer may be cross-linked and may also include free radical inhibitors. The co-polymer may be incorporated into a support material and used in an anion exchange membrane or membrane electrode assembly.
    Type: Application
    Filed: April 18, 2025
    Publication date: July 31, 2025
    Inventors: Qiuying Zhang, Mengjie Chen, Bamdad Bahar, Sarah Toombs, Benjamin Kredensor
  • Publication number: 20250235819
    Abstract: An environmental control system employs an electrolysis cell utilizing an anion conducting membrane. A power supply is coupled across the anode and cathode of the electrolysis cell to drive reactions to reduce oxygen and/or carbon dioxide in an output gas flow. A cathode enclosure may be coupled with the electrolysis cell and provide an input gas flow and receive the output gas flow. A first electrolysis cell may be utilized to reduce the carbon dioxide concentration in an output flow that is directed to a second electrolysis cell, that reduces the concentration of oxygen. The oxygen and/or carbon dioxide may be vented from the system and used for an auxiliary purpose. An electrolyte solution may be configured in a loop from a reservoir to the anode, to provide a flow of electrolyte solution to the anode. Moisture from the cathode may be collected and provided to the anode.
    Type: Application
    Filed: February 24, 2025
    Publication date: July 24, 2025
    Inventors: Jacob Zerby, Bamdad Bahar, Sai Yellamilli
  • Patent number: 12364951
    Abstract: Composite polyether block amide (PEBA) copolymer tubes incorporate an ultra-thin PEBA layer that enables rapid moisture transfer and exchange through the tube. A composite PEBA film may include a porous scaffold support and may be formed or incorporated into the composite PEBA tube. A porous scaffold support may be coated or imbibed with PEBA to form a composite PEBA film. A composite PEBA film may be wrapped on a mandrel or over a porous scaffold support to form a composite PEBA tube. A film layer may be applied over a wrapped composite PEBA film to secure the layers together. The film layer by applied by dipping, spraying or painting.
    Type: Grant
    Filed: January 16, 2023
    Date of Patent: July 22, 2025
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Taoli Gu, David McAndrews, Abhishek Bandlore, Jacob Sumner Zerby
  • Patent number: 12357983
    Abstract: A proton exchange polymer comprises a polynorbornene copolymer with hydrophobic and hydrophilic blocks that can be phosphonated to produce phosphonic acid functional groups for proton exchange. Also, the polymer may be crosslinked to form quaternary ammonium groups on the side chains. The polynorbornene copolymer may be acid doped to ionically bond phosphonic acids to the quaternary ammonium groups that may for ion pairs for proton exchange. The proton exchange polymer has high temperature stability with the phosphonic acid functional group and can be mechanically durable with cross linking. Proton exchange membranes may utilize the proton exchange membrane in fuel cell and electrolyzer applications.
    Type: Grant
    Filed: December 23, 2024
    Date of Patent: July 15, 2025
    Assignee: USA Fortescue IP, INC.
    Inventors: Mengjie Chen, Qiuying Zhang, Bamdad Bahar, Xuzhe Cao, Monica Joan McNicol
  • Patent number: 12352459
    Abstract: A composite exchange membrane is made by combining ionomer with porous polyolefin, such as polyethylene or polypropylene. The composite ion exchange membrane may be used in the core of an energy recovery ventilator. The core of the energy recovery ventilator may comprise corrugated or pleated supports for supporting the composite ion exchange membrane. The air flow into the energy recovery ventilator may be modified to actively create non-laminar flow.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: July 8, 2025
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Jack Saltwick
  • Publication number: 20250128250
    Abstract: A proton exchange polymer comprises a polynorbornene copolymer with hydrophobic and hydrophilic blocks that can be phosphonated to produce phosphonic acid functional groups for proton exchange. Also, the polymer may be crosslinked to form quaternary ammonium groups on the side chains. The polynorbornene copolymer may be acid doped to ionically bond phosphonic acids to the quaternary ammonium groups that may for ion pairs for proton exchange. The proton exchange polymer has high temperature stability with the phosphonic acid functional group and can be mechanically durable with cross linking. Proton exchange membranes may utilize the proton exchange membrane in fuel cell and electrolyzer applications.
    Type: Application
    Filed: December 23, 2024
    Publication date: April 24, 2025
    Inventors: Mengjie Chen, Qiuying Zhang, Bamdad Bahar, Xuzhe Cao, Monica Joan McNicol
  • Patent number: 12283729
    Abstract: An anion exchange branched co-polymer includes poly(aryl) and a branched compound and quinuclininuium side chains. The co-polymer may include xanthene or bibenzofuran. The anion exchange branched co-polymer may be more durable and have less creep and may have a higher ion exchange capacity (IEC) due to the structure and because some of the side chains may have multiple functional sites. The co-polymer may be cross-linked and may also include free radical inhibitors. The co-polymer may be incorporated into a support material and used in an anion exchange membrane or membrane electrode assembly.
    Type: Grant
    Filed: October 25, 2024
    Date of Patent: April 22, 2025
    Inventors: Qiuying Zhang, Mengjie Chen, Bamdad Bahar, Sarah Toombs, Benjamin Kredensor
  • Patent number: 12263447
    Abstract: A composite ion conducting tube is made by wrapping a support material or ion conducting sheet to from a tube having overlaps of layers that are bonded. The ion conducting sheet or tape used to make the tube may be very thin and the tube may be formed in situ by wrapping the support material and then coating with ion conducting polymer. The ion conducting tubes may be used in a pervaporation module or desalination system. The ion conducting tubes may be spirally wrapped or longitudinally wrapped and may be very thin having a tube wall thickness of no more than 25 microns.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: April 1, 2025
    Inventors: Bamdad Bahar, Harish Opadrishta, William Parmelee
  • Publication number: 20250102192
    Abstract: A high water transfer electrochemical compressor is described having a ā€˜n’ transfer of water through the ion conducting membrane of greater than one. This may be accomplished by reducing the equivalent weight of the ion conducting polymer, such as an ionomer to less than about 900 and/or by reinforcing the low equivalent weight ionomer with a support material, such as an expanded polytetrafluoroethylene. This may be accomplished by making components of the electrochemical cell hydrophilic including the electrodes and/or gas diffusion media. This may be accomplished by adding a flow component to a feed fluid or refrigerant, such as an alcohol, acid, or acetone, for example. A flow component may modify an electrode and/or the ion conducting media, by rendering them hydrophilic. A flow component may swell an ion conducting media enable high transport of the working fluid.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Bamdad Bahar, William Parmelee
  • Publication number: 20250092861
    Abstract: An electrochemical heat transfer device for a hot water tank utilizes an electrochemical hydrogen compressor to pump hydrogen into and out of a tank having a metal hydride forming alloy therein. The absorption of hydrogen by the metal hydride forming alloy is exothermic, produces heat, and the desorption of the hydrogen from the metal hydride forming alloy is endothermic and draws heat in. An electrochemical hydrogen compressor may be configured between to tanks and pump hydrogen back and forth to form a heat transfer device, such as a hot water heater. A heat transfer device may be coupled with the tank or may comprise the outer surface of the tank to transfer heat to an object or to the surroundings. A closed loop may be configured having two tanks and one or two electrochemical hydrogen compressors to pump the hydrogen in a loop around the system.
    Type: Application
    Filed: September 29, 2024
    Publication date: March 20, 2025
    Inventors: Bamdad Bahar, William Parmelee
  • Publication number: 20250093053
    Abstract: A cooling system utilizes an organic ionic salt composition for dehumidification of an airflow. The organic ionic salt composition absorbs moisture from an inlet airflow to produce an outlet airflow with a reduce moisture from that of the inlet airflow. The organic ionic salt composition may be regenerated, wherein the absorbed moisture is expelled by heating with a heating device. The heating device may be an electrochemical heating device, such as a fuel cell, an electrochemical metal hydride heating device, an electrochemical heat pump or compressor, or a condenser of a refrigerant cycle, which may utilize an electrochemical pump or compressor. The efficiency of the cooling system may be increased by utilization of the waste heat the cooling system. The organic ionic salt composition may circulate back and forth or in a loop between a conditioner, where it absorbs moisture, to a regenerator, where moisture is desorbed by heating.
    Type: Application
    Filed: September 29, 2024
    Publication date: March 20, 2025
    Inventors: Bamdad Bahar, William Parmelee, Omar Abdelaziz, Qu Ming
  • Publication number: 20250073696
    Abstract: An ion exchange membrane has multiple layers of ionic polymers which each contain substantially different chemical compositions. i.e. varying side chain lengths, varying backbone chemistries or varying ionic functionality. Utilizing completely different chemistries has utility in many applications such as fuel cells where for example, one layer can help reduce fuel crossover through the membrane. Or one layer can impart substantial hydrophobicity to the electrode formulation. Or one layer can selectively diffuse a reactant while excluding others. Also, one chemistry may allow for impartation of significant mechanical properties or chemical resistance to another more ionically conductive ionomer. The ion exchange membrane may include at least two layers with substantially different chemical properties.
    Type: Application
    Filed: November 18, 2024
    Publication date: March 6, 2025
    Inventors: Bamdad Bahar, John Paul Saltwick
  • Patent number: 12233380
    Abstract: An environmental control system employs an electrolysis cell utilizing an anion conducting membrane. A power supply is coupled across the anode and cathode of the electrolysis cell to drive reactions to reduce oxygen and/or carbon dioxide in an output gas flow. A cathode enclosure may be coupled with the electrolysis cell and provide an input gas flow and receive the output gas flow. A first electrolysis cell may be utilized to reduce the carbon dioxide concentration in an output flow that is directed to a second electrolysis cell, that reduces the concentration of oxygen. The oxygen and/or carbon dioxide may be vented from the system and used for an auxiliary purpose. An electrolyte solution may be configured in a loop from a reservoir to the anode, to provide a flow of electrolyte solution to the anode. Moisture from the cathode may be collected and provided to the anode.
    Type: Grant
    Filed: November 27, 2023
    Date of Patent: February 25, 2025
    Inventors: Jacob Zerby, Bamdad Bahar, Sai Yellamilli
  • Publication number: 20250058072
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: September 2, 2024
    Publication date: February 20, 2025
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20250062377
    Abstract: An anion exchange branched co-polymer includes poly(aryl) and a branched compound and quinuclininuium side chains. The co-polymer may include xanthene or bibenzofuran. The anion exchange branched co-polymer may be more durable and have less creep and may have a higher ion exchange capacity (IEC) due to the structure and because some of the side chains may have multiple functional sites. The co-polymer may be cross-linked and may also include free radical inhibitors. The co-polymer may be incorporated into a support material and used in an anion exchange membrane or membrane electrode assembly.
    Type: Application
    Filed: October 25, 2024
    Publication date: February 20, 2025
    Inventors: Qiuying Zhang, Mengjie Chen, Bamdad Bahar, Sarah Toombs, Benjamin Kredensor
  • Patent number: 12203186
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Grant
    Filed: September 29, 2023
    Date of Patent: January 21, 2025
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Jacob Zerby, Zhefei Li, William Parmelee