Patents by Inventor Bamdad Bahar

Bamdad Bahar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230166217
    Abstract: A composite pervaporation laminate incorporates a thin hydrophilic film laminated on a formable macroporous support layer. The method for making the membrane involves solution casting a thin film on a carrier substrate and transferring the said film onto a macroporous support by hot pressing, such as by decal transfer. Ultra-thin defect-free film, such as less than 5 micrometers, are laminated using this method to achieve very high-water transmission rates and very low or zero gas permeation. The membrane can then be formed into a three-dimensional structure by pleating or corrugating to increase the surface area. The membrane can be used as spacers in an ERV application.
    Type: Application
    Filed: December 1, 2022
    Publication date: June 1, 2023
    Inventors: Sai Nitin Yellamilli, Dominick Bindl, Abhishek Bandlore, Bamdad Bahar
  • Publication number: 20230128278
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20230095296
    Abstract: A composite exchange membrane is made by combining ionomer with porous polyolefin, such as polyethylene or polypropylene. The composite ion exchange membrane may be used in the core of an energy recovery ventilator. The core of the energy recovery ventilator may comprise corrugated or pleated supports for supporting the composite ion exchange membrane. The air flow into the energy recovery ventilator may be modified to actively create non-laminar flow.
    Type: Application
    Filed: November 2, 2022
    Publication date: March 30, 2023
    Inventors: Bamdad Bahar, Jack Saltwick
  • Publication number: 20230089056
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 23, 2023
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20230070246
    Abstract: A tube-in-tube heat exchanger utilizes a selectively permeable tube having a selective permeable layer to allow the refrigerant to transfer into an ionic liquid to generate heating or cooling. The ionic liquid then provides heating or cooling to a heat transfer fluid through a non-permeable layer or tube. The system may be configured as a shell and tube design, with the third fluid free to flow on the outside of the shell, or as a shell and tube-in-tube, with a central tube containing a first liquid, a second tube containing a second liquid, and an outer shell containing the third liquid. The selectively permeable tube may include an anion or cation selectively permeable layer and this layer may be supported by a support layer or tube.
    Type: Application
    Filed: September 26, 2022
    Publication date: March 9, 2023
    Inventors: Bamdad Bahar, Jacob Zerby, Harish Opadrishta, Jason Woods
  • Publication number: 20230044117
    Abstract: An environmental control system employs an electrolysis cell utilizing an anion conducting membrane. A power supply is coupled across the anode and cathode of the electrolysis cell to drive reactions to reduce oxygen and/or carbon dioxide in an output gas flow. A cathode enclosure may be coupled with the electrolysis cell and provide an input gas flow and receive the output gas flow. A first electrolysis cell may be utilized to reduce the carbon dioxide concentration in an output flow that is directed to a second electrolysis cell, that reduces the concentration of oxygen. The oxygen and/or carbon dioxide may be vented from the system and used for an auxiliary purpose. An electrolyte solution may be configured in a loop from a reservoir to the anode, to provide a flow of electrolyte solution to the anode. Moisture from the cathode may be collected and provided to the anode.
    Type: Application
    Filed: December 30, 2020
    Publication date: February 9, 2023
    Inventors: Jacob Zerby, Bamdad Bahar, Sai Yellamilli
  • Patent number: 11566853
    Abstract: A heat exchanger incorporates a metal hydride heat exchanger and mitigates the fluid mixing process, and thus greatly improves the heat transfer efficiency and heat recovery processes. The metal hydride heat exchanger has a container for the metal hydride that has a large aspect ratio. A plurality of high aspect container for the metal hydride may be coupled with a manifold.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 31, 2023
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Peter Mark Golben, William Parmelee
  • Publication number: 20230028285
    Abstract: A water purification system utilizes an ionomer membrane and mild vacuum to draw water from source water through the membrane. A water source may be salt water or a contaminated water source. The water drawn through the membrane passes across the condenser chamber to a condenser surface where it is condensed into purified water. The condenser surface may be metal or any other suitable surface and may be flat or pleated. In addition, the condenser surface may be maintained at a lower temperature than the water on the water source side of the membrane. The ionomer membrane may be configured in a cartridge, a pleated or flat plate configuration. A latent heat loop may be configured to carry the latent heat of vaporization from the condenser back to the water source side of the ionomer membrane. The source water may be heated by a solar water heater.
    Type: Application
    Filed: June 27, 2022
    Publication date: January 26, 2023
    Inventors: Bamdad Bahar, Luyu Jin, William Parmelee, Jacob Zerby
  • Patent number: 11554347
    Abstract: Composite polyether block amide (PEBA) copolymer tubes incorporate an ultra-thin PEBA layer that enables rapid moisture transfer and exchange through the tube. A composite PEBA film may include a porous scaffold support and may be formed or incorporated into the composite PEBA tube. A porous scaffold support may be coated or imbibed with PEBA to form a composite PEBA film. A composite PEBA film may be wrapped on a mandrel or over a porous scaffold support to form a composite PEBA tube. A film layer may be applied over a wrapped composite PEBA film to secure the layers together. The film layer by applied by dipping, spraying or painting.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: January 17, 2023
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Taoli Gu, David McAndrews, Abhishek Bandlore, Jacob Sumner Zerby
  • Patent number: 11552320
    Abstract: An anion exchange polymer includes aryl ether linkage free polyarylenes having aromatic/polyaromatic rings in polymer backbone and a tethered alkyl quaternary ammonium hydroxide side groups. This anion exchange polymer may be utilized in an anion exchange process and may be made into a thin anion transfer membrane. An ion transfer membrane may be mechanically reinforced having one or more layers of functional polymer based on a terphenyl backbone with quaternary ammonium functional groups and an inert porous scaffold material for reinforcement. An anion exchange membrane may have multilayers of anion exchange polymers which each containing varying types of backbones, varying degrees of functionalization, or varying functional groups to reduce ammonia crossover through the membrane.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: January 10, 2023
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Taoli Gu
  • Patent number: 11504494
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: November 22, 2022
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20220364773
    Abstract: An electrochemical heat transfer device utilizes an electrochemical hydrogen compressor to pump hydrogen into and out of a reservoir having a metal hydride forming alloy therein. The absorption of hydrogen by the metal hydride forming alloy is exothermic, produces heat, and the desorption of the hydrogen from the metal hydride forming alloy is endothermic and draws heat in. An electrochemical hydrogen compressor may be configured between to reservoirs and pump hydrogen back and forth to form a heat transfer device. A heat exchange device may be coupled with the reservoir or may comprise the outer surface of the reservoir to transfer heat to an object or to the surroundings. A closed loop may be configured having two reservoirs and one or two electrochemical hydrogen compressors to pump the hydrogen in a loop around the system.
    Type: Application
    Filed: May 30, 2022
    Publication date: November 17, 2022
    Inventors: Bamdad Bahar, William D. Parmelee
  • Publication number: 20220311018
    Abstract: A bipolar plate having side ports is described for use with an electrochemical cell. A side port having a high aspect ratio will have an effect on the partial pressure of the reactant gasses and prevent high pressure drop of the working fluid transport to the electrodes. The membrane electrode assembly may have a high aspect ratio and the port opening may be on the long side of the bipolar plate. The electrochemical cell may be configured in an enclosure that is maintained at less than atmospheric pressure which further increases the need for low pressure drop fuel deliver to the electrodes, especially in electrochemical compressor applications.
    Type: Application
    Filed: April 11, 2022
    Publication date: September 29, 2022
    Inventors: Bamdad Bahar, Kyriacos Zachary, William Parmelee, Scott Thomas Fackler
  • Publication number: 20220307732
    Abstract: An electrochemical compressor utilizes an anion conducting layer disposed between an anode and a cathode for transporting a working fluid. The working fluid may include carbon dioxide that is dissolved in water and is partially converted to carbonic acid that is equilibrium with bicarbonate anion. An electrical potential across the anode and cathode creates a pH gradient that drives the bicarbonate anion across the anion conducting layer to the cathode, wherein it is reformed into carbon dioxide. Therefore, carbon dioxide is pumped across the anion conducting layer. The compressor may be part of a refrigeration system that pumps the working fluid in a closed loop through a condenser and an evaporator.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 29, 2022
    Inventor: Bamdad Bahar
  • Patent number: 11454458
    Abstract: A tube-in-tube heat exchanger utilizes a selectively permeable tube having a selective permeable layer to allow the refrigerant to transfer into an ionic liquid to generate heating or cooling. The ionic liquid then provides heating or cooling to a heat transfer fluid through a non-permeable layer or tube. The system may be configured as a shell and tube design, with the third fluid free to flow on the outside of the shell, or as a shell and tube-in-tube, with a central tube containing a first liquid, a second tube containing a second liquid, and an outer shell containing the third liquid. The selectively permeable tube may include an anion or cation selectively permeable layer and this layer may be supported by a support layer or tube.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: September 27, 2022
    Inventors: Bamdad Bahar, Jacob Zerby, Harish Opadrishta, Jason Woods
  • Patent number: 11408082
    Abstract: An electrochemical system includes an electrochemical compressor through which a working fluid that includes a component that primarily acts as an electrochemically-active component flows; a sealed vessel in which the electrochemical compressor is housed; an inlet conduit for passing working fluid into the vessel; and an outlet conduit for passing fluid out of the vessel. The working fluid that leaks from the electrochemical compressor is contained within the vessel.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 9, 2022
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Steven Naugler
  • Publication number: 20220235747
    Abstract: An electrochemical heat transfer device for a hot water tank utilizes an electrochemical hydrogen compressor to pump hydrogen into and out of a tank having a metal hydride forming alloy therein. The absorption of hydrogen by the metal hydride forming alloy is exothermic, produces heat, and the desorption of the hydrogen from the metal hydride forming alloy is endothermic and draws heat in. An electrochemical hydrogen compressor may be configured between to tanks and pump hydrogen back and forth to form a heat transfer device, such as a hot water heater. A heat transfer device may be coupled with the tank or may comprise the outer surface of the tank to transfer heat to an object or to the surroundings. A closed loop may be configured having two tanks and one or two electrochemical hydrogen compressors to pump the hydrogen in a loop around the system.
    Type: Application
    Filed: March 7, 2022
    Publication date: July 28, 2022
    Inventors: Bamdad Bahar, William Parmelee
  • Publication number: 20220213283
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 BiPhenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Inventors: Bamdad Bahar, Zhefei Li
  • Patent number: 11369897
    Abstract: A water purification system utilizes an ionomer membrane and mild vacuum to draw water from source water through the membrane. A water source may be salt water or a contaminated water source. The water drawn through the membrane passes across the condenser chamber to a condenser surface where it is condensed into purified water. The condenser surface may be metal or any other suitable surface and may be flat or pleated. In addition, the condenser surface may be maintained at a lower temperature than the water on the water source side of the membrane. The ionomer membrane may be configured in a cartridge, a pleated or flat plate configuration. A latent heat loop may be configured to carry the latent heat of vaporization from the condenser back to the water source side of the ionomer membrane. The source water may be heated by a solar water heater.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 28, 2022
    Assignee: FFI IONIX IP, INC.
    Inventors: Bamdad Bahar, Luyu Jin, William Parmelee, Jacob Zerby
  • Publication number: 20220193613
    Abstract: A composite ion conducting tube is made by wrapping a support material or ion conducting sheet to from a tube having overlaps of layers that are bonded. The ion conducting sheet or tape used to make the tube may be very thin and the tube may be formed in situ by wrapping the support material and then coating with ion conducting polymer. The ion conducting tubes may be used in a pervaporation module or desalination system. The ion conducting tubes may be spirally wrapped or longitudinally wrapped and may be very thin having a tube wall thickness of no more than 25 microns.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Inventors: Bamdad Bahar, Harish Opadrishta, William Parmelee