Patents by Inventor Bamdad Bahar

Bamdad Bahar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11365485
    Abstract: An ozone generator system utilizes an electrochemical cell to produce and control ozone concentrations within an enclosure or to supply ozone to a flow conduit. The enclosure may he coupled with a flow conduit that carries the produced ozone to a desired location. An enclosure may be a sterilization chamber and the concentration of ozone produced by the ozone generating system may be sufficient to sterilize articles within the enclosure. An oxygen control electrolyzer cell and/or humidity control electrolyzer cell may be coupled with the enclosure to further control the environment of the enclosure. A humidity control electrolyzer cell may be fluidly coupled with the ozone generator to supply humidity for reaction on the anode of the ozone generator.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: June 21, 2022
    Assignee: FFI Ionix IP, Inc.
    Inventors: Bamdad Bahar, Jacob Zerby
  • Patent number: 11346585
    Abstract: An electrochemical heat transfer device utilizes an electrochemical hydrogen compressor to pump hydrogen into and out of a reservoir having a metal hydride forming alloy therein. The absorption of hydrogen by the metal hydride forming alloy is exothermic, produces heat, and the desorption of the hydrogen from the metal hydride forming alloy is endothermic and draws heat in. An electrochemical hydrogen compressor may be configured between to reservoirs and pump hydrogen back and forth to form a heat transfer device. A heat exchange device may be coupled with the reservoir or may comprise the outer surface of the reservoir to transfer heat to an object or to the surroundings. A closed loop may be configured having two reservoirs and one or two electrochemical hydrogen compressors to pump the hydrogen in a loop around the system.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: May 31, 2022
    Inventors: Bamdad Bahar, William Parmelee
  • Patent number: 11339996
    Abstract: An electrochemical compressor utilizes an anion conducting layer disposed between an anode and a cathode for transporting a working fluid. The working fluid may include carbon dioxide that is dissolved in water and is partially converted to carbonic acid that is equilibrium with bicarbonate anion. An electrical potential across the anode and cathode creates a pH gradient that drives the bicarbonate anion across the anion conducting layer to the cathode, wherein it is reformed into carbon dioxide. Therefore, carbon dioxide is pumped across the anion conducting layer. The compressor may be part of a refrigeration system that pumps the working fluid in a closed loop through a condenser and an evaporator.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: May 24, 2022
    Inventor: Bamdad Bahar
  • Patent number: 11318421
    Abstract: Composite membrane tubing includes a porous scaffold support combined with polyether block amide copolymer. The composite membrane tubing has overlapping “fusion areas” that are an artifact of the manufacturing process. The methods of manufacturing above-mentioned composite membrane tubing have also been addressed. The composite membrane tubing can be reinforced with a structural mesh to further provide rigidity and strength. Composite membrane tubing or generally extruded tubing can be integrated into a multi-tube module for various applications.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: May 3, 2022
    Inventors: Bamdad Bahar, Taoli Gu, David McAndrews, Abhishek Bandlore
  • Publication number: 20220118402
    Abstract: An electrochemical system utilizes an anion conducting layer disposed between an anode and a cathode for transporting a working fluid. The working fluid may include carbon dioxide that is dissolved in water and is partially converted to carbonic acid that is equilibrium with bicarbonate anion. An electrical potential across the anode and cathode creates a pH gradient that drives the bicarbonate anion across the anion conducting layer to the cathode, wherein it is reformed into carbon dioxide. Therefore, carbon dioxide is pumped across the anion conducting layer.
    Type: Application
    Filed: January 3, 2022
    Publication date: April 21, 2022
    Inventors: Bamdad Bahar, Jacob Zerby
  • Patent number: 11302932
    Abstract: A bipolar plate having side ports is described for use with an electrochemical cell. A side port having a high aspect ratio will have an effect on the partial pressure of the reactant gasses and prevent high pressure drop of the working fluid transport to the electrodes. The membrane electrode assembly may have a high aspect ratio and the port opening may be on the long side of the bipolar plate. The electrochemical cell may be configured in an enclosure that is maintained at less than atmospheric pressure which further increases the need for low pressure drop fuel deliver to the electrodes, especially in electrochemical compressor applications.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 12, 2022
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Kyriacos Zachary, William Parmelee, Scott Thomas Fackler
  • Publication number: 20220105471
    Abstract: Composite polyether block amide (PEBA) copolymer tubes incorporate an ultra-thin PEBA extruded layer that enables rapid moisture transfer and exchange through the tube. An extruded composite PEBA film may include a porous scaffold support and may be formed or incorporated into the composite PEBA tube. An extruded PEBA may be melted into pores of a porous scaffold support. Extruded PEBA may be wrapped on a mandrel or over a porous scaffold support to form a composite PEBA tube. A film layer may be applied over a wrapped composite PEBA film to secure the layers together. A support tube may be configured inside or outside of the PEBA tube.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Bamdad Bahar, Abhishek Bandlore, Jacob Zerby
  • Publication number: 20220099314
    Abstract: A cooling system utilizes an organic ionic salt composition for dehumidification of an airflow. The organic ionic salt composition absorbs moisture from an inlet airflow to produce an outlet airflow with a reduce moisture from that of the inlet airflow. The organic ionic salt composition may be regenerated, wherein the absorbed moisture is expelled by heating with a heating device. The heating device may be an electrochemical heating device, such as a fuel cell, an electrochemical metal hydride heating device, an electrochemical heat pump or compressor, or a condenser of a refrigerant cycle, which may utilize an electrochemical pump or compressor. The efficiency of the cooling system may be increased by utilization of the waste heat the cooling system. The organic ionic salt composition may circulate back and forth or in a loop between a conditioner, where it absorbs moisture, to a regenerator, where moisture is desorbed by heating.
    Type: Application
    Filed: October 18, 2021
    Publication date: March 31, 2022
    Inventors: Bamdad Bahar, William Parmelee, Omar Abdelaziz, Qu Ming
  • Patent number: 11286357
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 BiPhenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: March 29, 2022
    Inventors: Bamdad Bahar, Zhefei Li
  • Patent number: 11273413
    Abstract: A composite ion conducting tube is made by wrapping a support material or ion conducting sheet to from a tube having overlaps of layers that are bonded. The ion conducting sheet or tape used to make the tube may be very thin and the tube may be formed in situ by wrapping the support material and then coating with ion conducting polymer. The ion conducting tubes may be used in a pervaporation module or desalination system. The ion conducting tubes may be spirally wrapped or longitudinally wrapped and may be very thin having a tube wall thickness of no more than 25 microns.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: March 15, 2022
    Inventors: Bamdad Bahar, Harish Opadrishta, William Parmelee
  • Publication number: 20220072485
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 BiPhenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Bamdad Bahar, Chulsung Bae
  • Patent number: 11268738
    Abstract: An electrochemical heat transfer device for a hot water tank utilizes an electrochemical hydrogen compressor to pump hydrogen into and out of a tank having a metal hydride forming alloy therein. The absorption of hydrogen by the metal hydride forming alloy is exothermic, produces heat, and the desorption of the hydrogen from the metal hydride forming alloy is endothermic and draws heat in. An electrochemical hydrogen compressor may be configured between to tanks and pump hydrogen back and forth to form a heat transfer device, such as a hot water heater. A heat transfer device may be coupled with the tank or may comprise the outer surface of the tank to transfer heat to an object or to the surroundings. A closed loop may be configured having two tanks and one or two electrochemical hydrogen compressors to pump the hydrogen in a loop around the system.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: March 8, 2022
    Inventors: Bamdad Bahar, William Parmelee
  • Patent number: 11213785
    Abstract: An electrochemical system utilizes an anion conducting layer disposed between an anode and a cathode for transporting a working fluid. The working fluid may include carbon dioxide that is dissolved in water and is partially converted to carbonic acid that is equilibrium with bicarbonate anion. An electrical potential across the anode and cathode creates a pH gradient that drives the bicarbonate anion across the anion conducting layer to the cathode, wherein it is reformed into carbon dioxide. Therefore, carbon dioxide is pumped across the anion conducting layer.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 4, 2022
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20210404709
    Abstract: A high water transfer electrochemical compressor is described having a ‘n’ transfer of water through the ion conducting membrane of greater than one. This may be accomplished by reducing the equivalent weight of the ion conducting polymer, such as an ionomer to less than about 900 and/or by reinforcing the low equivalent weight ionomer with a support material, such as an expanded polytetrafluoroethylene. This may be accomplished by making components of the electrochemical cell hydrophilic including the electrodes and/or gas diffusion media. This may be accomplished by adding a flow component to a feed fluid or refrigerant, such as an alcohol, acid, or acetone, for example. A flow component may modify an electrode and/or the ion conducting media, by rendering them hydrophilic. A flow component may swell an ion conducting media enable high transport of the working fluid.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Bamdad Bahar, William Parmelee
  • Publication number: 20210396429
    Abstract: A hydride heat engine produces electricity from a heat source, such as a solar heater. A plurality of metal hydride reservoirs are heated by the heating device and a working fluid comprises hydrogen is incrementally move from one metal hydride reservoir to a success metal hydride reservoir. The working fluid is passed, at a high pressure, from the last of the plurality of metal hydride reservoirs to an electro-chemical-expander. The electro-chemical-expander has an anode, a cathode, and an ionomer therebetween. The hydrogen is passed from the anode at high pressure to the cathode at lower pressure and electricity is generated. The solar heater may be a solar water heater and the hot water may heat the metal hydride reservoirs to move the hydrogen. The working fluid may move in a closed loop.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 23, 2021
    Inventors: Bamdad Bahar, Peter Golben, William Parmelee, Scott Fackler
  • Publication number: 20210387174
    Abstract: An ion exchange membrane has multiple layers of ionic polymers which each contain substantially different chemical compositions. i.e. varying side chain lengths, varying backbone chemistries or varying ionic functionality. Utilizing completely different chemistries has utility in many applications such as fuel cells where for example, one layer can help reduce fuel crossover through the membrane. Or one layer can impart substantial hydrophobicity to the electrode formulation. Or one layer can selectively diffuse a reactant while excluding others. Also, one chemistry may allow for impartation of significant mechanical properties or chemical resistance to another more ionically conductive ionomer. The ion exchange membrane may include at least two layers with substantially different chemical properties.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Bamdad Bahar, John Paul Saltwick
  • Publication number: 20210381117
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Bamdad Bahar, Jacob Zerby, Xhefei Li, William Parmelee
  • Patent number: 11173456
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 Biphenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: November 16, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Chulsung Bae
  • Publication number: 20210347956
    Abstract: An anion exchange ionomer is disclosed that contains a fluorinated, ether-free backbone, and a fluorinated ether based quaternary ammonium functional group. The novel polymer has improved chemical and mechanical stability as compared to the state-of-the-art materials for incorporation in anion exchange membrane. The disclosed anion exchange ionomer may be incorporated into an anion exchange membrane and used in electrochemical applications.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 11, 2021
    Inventors: Bamdad Bahar, Taoli Gu, Sai Nitin Yellamilli
  • Patent number: 11149970
    Abstract: A cooling systems utilizes an organic ionic salt composition for dehumidification of an airflow. The organic ionic salt composition absorbs moisture from an inlet airflow to produce an outlet airflow with a reduce moisture from that of the inlet airflow. The organic ionic salt composition may be regenerated, wherein the absorbed moisture is expelled by heating with a heating device. The heating device may be an electrochemical heating device, such as a fuel cell, an electrochemical metal hydride heating device, an electrochemical heat pump or compressor, or a condenser of a refrigerant cycle, which may utilize an electrochemical pump or compressor. The efficiency of the cooling system may be increased by utilization of the waste heat the cooling system. The organic ionic salt composition may circulate back and forth or in a loop between a conditioner, where it absorbs moisture, to a regenerator, where moisture is desorbed by heating.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 19, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, William Parmelee, Omar Abdelaziz, Qu Ming