Patents by Inventor Bamdad Bahar

Bamdad Bahar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220099314
    Abstract: A cooling system utilizes an organic ionic salt composition for dehumidification of an airflow. The organic ionic salt composition absorbs moisture from an inlet airflow to produce an outlet airflow with a reduce moisture from that of the inlet airflow. The organic ionic salt composition may be regenerated, wherein the absorbed moisture is expelled by heating with a heating device. The heating device may be an electrochemical heating device, such as a fuel cell, an electrochemical metal hydride heating device, an electrochemical heat pump or compressor, or a condenser of a refrigerant cycle, which may utilize an electrochemical pump or compressor. The efficiency of the cooling system may be increased by utilization of the waste heat the cooling system. The organic ionic salt composition may circulate back and forth or in a loop between a conditioner, where it absorbs moisture, to a regenerator, where moisture is desorbed by heating.
    Type: Application
    Filed: October 18, 2021
    Publication date: March 31, 2022
    Inventors: Bamdad Bahar, William Parmelee, Omar Abdelaziz, Qu Ming
  • Patent number: 11286357
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 BiPhenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: March 29, 2022
    Inventors: Bamdad Bahar, Zhefei Li
  • Patent number: 11273413
    Abstract: A composite ion conducting tube is made by wrapping a support material or ion conducting sheet to from a tube having overlaps of layers that are bonded. The ion conducting sheet or tape used to make the tube may be very thin and the tube may be formed in situ by wrapping the support material and then coating with ion conducting polymer. The ion conducting tubes may be used in a pervaporation module or desalination system. The ion conducting tubes may be spirally wrapped or longitudinally wrapped and may be very thin having a tube wall thickness of no more than 25 microns.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: March 15, 2022
    Inventors: Bamdad Bahar, Harish Opadrishta, William Parmelee
  • Publication number: 20220072485
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 BiPhenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Bamdad Bahar, Chulsung Bae
  • Patent number: 11268738
    Abstract: An electrochemical heat transfer device for a hot water tank utilizes an electrochemical hydrogen compressor to pump hydrogen into and out of a tank having a metal hydride forming alloy therein. The absorption of hydrogen by the metal hydride forming alloy is exothermic, produces heat, and the desorption of the hydrogen from the metal hydride forming alloy is endothermic and draws heat in. An electrochemical hydrogen compressor may be configured between to tanks and pump hydrogen back and forth to form a heat transfer device, such as a hot water heater. A heat transfer device may be coupled with the tank or may comprise the outer surface of the tank to transfer heat to an object or to the surroundings. A closed loop may be configured having two tanks and one or two electrochemical hydrogen compressors to pump the hydrogen in a loop around the system.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: March 8, 2022
    Inventors: Bamdad Bahar, William Parmelee
  • Patent number: 11213785
    Abstract: An electrochemical system utilizes an anion conducting layer disposed between an anode and a cathode for transporting a working fluid. The working fluid may include carbon dioxide that is dissolved in water and is partially converted to carbonic acid that is equilibrium with bicarbonate anion. An electrical potential across the anode and cathode creates a pH gradient that drives the bicarbonate anion across the anion conducting layer to the cathode, wherein it is reformed into carbon dioxide. Therefore, carbon dioxide is pumped across the anion conducting layer.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 4, 2022
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20210404709
    Abstract: A high water transfer electrochemical compressor is described having a ā€˜n’ transfer of water through the ion conducting membrane of greater than one. This may be accomplished by reducing the equivalent weight of the ion conducting polymer, such as an ionomer to less than about 900 and/or by reinforcing the low equivalent weight ionomer with a support material, such as an expanded polytetrafluoroethylene. This may be accomplished by making components of the electrochemical cell hydrophilic including the electrodes and/or gas diffusion media. This may be accomplished by adding a flow component to a feed fluid or refrigerant, such as an alcohol, acid, or acetone, for example. A flow component may modify an electrode and/or the ion conducting media, by rendering them hydrophilic. A flow component may swell an ion conducting media enable high transport of the working fluid.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Bamdad Bahar, William Parmelee
  • Publication number: 20210396429
    Abstract: A hydride heat engine produces electricity from a heat source, such as a solar heater. A plurality of metal hydride reservoirs are heated by the heating device and a working fluid comprises hydrogen is incrementally move from one metal hydride reservoir to a success metal hydride reservoir. The working fluid is passed, at a high pressure, from the last of the plurality of metal hydride reservoirs to an electro-chemical-expander. The electro-chemical-expander has an anode, a cathode, and an ionomer therebetween. The hydrogen is passed from the anode at high pressure to the cathode at lower pressure and electricity is generated. The solar heater may be a solar water heater and the hot water may heat the metal hydride reservoirs to move the hydrogen. The working fluid may move in a closed loop.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 23, 2021
    Inventors: Bamdad Bahar, Peter Golben, William Parmelee, Scott Fackler
  • Publication number: 20210387174
    Abstract: An ion exchange membrane has multiple layers of ionic polymers which each contain substantially different chemical compositions. i.e. varying side chain lengths, varying backbone chemistries or varying ionic functionality. Utilizing completely different chemistries has utility in many applications such as fuel cells where for example, one layer can help reduce fuel crossover through the membrane. Or one layer can impart substantial hydrophobicity to the electrode formulation. Or one layer can selectively diffuse a reactant while excluding others. Also, one chemistry may allow for impartation of significant mechanical properties or chemical resistance to another more ionically conductive ionomer. The ion exchange membrane may include at least two layers with substantially different chemical properties.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Bamdad Bahar, John Paul Saltwick
  • Publication number: 20210381117
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Bamdad Bahar, Jacob Zerby, Xhefei Li, William Parmelee
  • Patent number: 11173456
    Abstract: An anion exchange membrane is made by mixing 2 trifluoroMethyl Ketone [nominal] (1.12 g, 4.53 mmol), 1 Biphenyl (0.70 g, 4.53 mmol), methylene chloride (3.0 mL), trifluoromethanesulfonic acid (TFSA) (3.0 mL) to produce a pre-polymer. The pre-polymer is then functionalized to produce an anion exchange polymer. The pre-polymer may be functionalized with trimethylamine in solution with water. The pre-polymer may be imbibed into a porous scaffold material, such as expanded polytetrafluoroethylene to produce a composite anion exchange membrane.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: November 16, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Chulsung Bae
  • Publication number: 20210347956
    Abstract: An anion exchange ionomer is disclosed that contains a fluorinated, ether-free backbone, and a fluorinated ether based quaternary ammonium functional group. The novel polymer has improved chemical and mechanical stability as compared to the state-of-the-art materials for incorporation in anion exchange membrane. The disclosed anion exchange ionomer may be incorporated into an anion exchange membrane and used in electrochemical applications.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 11, 2021
    Inventors: Bamdad Bahar, Taoli Gu, Sai Nitin Yellamilli
  • Patent number: 11149970
    Abstract: A cooling systems utilizes an organic ionic salt composition for dehumidification of an airflow. The organic ionic salt composition absorbs moisture from an inlet airflow to produce an outlet airflow with a reduce moisture from that of the inlet airflow. The organic ionic salt composition may be regenerated, wherein the absorbed moisture is expelled by heating with a heating device. The heating device may be an electrochemical heating device, such as a fuel cell, an electrochemical metal hydride heating device, an electrochemical heat pump or compressor, or a condenser of a refrigerant cycle, which may utilize an electrochemical pump or compressor. The efficiency of the cooling system may be increased by utilization of the waste heat the cooling system. The organic ionic salt composition may circulate back and forth or in a loop between a conditioner, where it absorbs moisture, to a regenerator, where moisture is desorbed by heating.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 19, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, William Parmelee, Omar Abdelaziz, Qu Ming
  • Publication number: 20210320315
    Abstract: An anion exchange polymer includes aryl ether linkage free polyarylenes having aromatic/polyaromatic rings in polymer backbone and a tethered alkyl quaternary ammonium hydroxide side groups. This anion exchange polymer may be utilized in an anion exchange process and may be made into a thin anion transfer membrane. An ion transfer membrane may be mechanically reinforced having one or more layers of functional polymer based on a terphenyl backbone with quaternary ammonium functional groups and an inert porous scaffold material for reinforcement. An anion exchange membrane may have multilayers of anion exchange polymers which each containing varying types of backbones, varying degrees of functionalization, or varying functional groups to reduce ammonia crossover through the membrane.
    Type: Application
    Filed: February 12, 2020
    Publication date: October 14, 2021
    Inventors: Bamdad Bahar, Taoli Gu
  • Patent number: 11118816
    Abstract: A high water transfer electrochemical compressor is described having a ā€˜n’ transfer of water through the ion conducting membrane of greater than one. This may be accomplished by reducing the equivalent weight of the ion conducting polymer, such as an ionomer to less than about 900 and/or by reinforcing the low equivalent weight ionomer with a support material, such as an expanded polytetrafluoroethylene. This may be accomplished by making components of the electrochemical cell hydrophilic including the electrodes and/or gas diffusion media. This may be accomplished by adding a flow component to a feed fluid or refrigerant, such as an alcohol, acid, or acetone, for example. A flow component may modify an electrode and/or the ion conducting media, by rendering them hydrophilic. A flow component may swell an ion conducting media enable high transport of the working fluid.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: September 14, 2021
    Inventors: Bamdad Bahar, William Parmelee
  • Patent number: 11103864
    Abstract: An ion exchange membrane has multiple layers of ionic polymers which each contain substantially different chemical compositions. i.e. varying side chain lengths, varying backbone chemistries or varying ionic functionality. Utilizing completely different chemistries has utility in many applications such as fuel cells where for example, one layer can help reduce fuel crossover through the membrane. Or one layer can impart substantial hydrophobicity to the electrode formulation. Or one layer can selectively diffuse a reactant while excluding others. Also, one chemistry may allow for impartation of significant mechanical properties or chemical resistance to another more ionically conductive ionomer. The ion exchange membrane may include at least two layers with substantially different chemical properties.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: August 31, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, John Paul Saltwick
  • Patent number: 11098408
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: August 24, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Jacob Zerby, Xhefei Li, William Parmelee
  • Patent number: 11094956
    Abstract: A hydride heat engine produces electricity from a heat source, such as a solar heater. A plurality of metal hydride reservoirs are heated by the heating device and a working fluid comprises hydrogen is incrementally move from one metal hydride reservoir to a success metal hydride reservoir. The working fluid is passed, at a high pressure, from the last of the plurality of metal hydride reservoirs to an electro-chemical-expander. The electro-chemical-expander has an anode, a cathode, and an ionomer therebetween. The hydrogen is passed from the anode at high pressure to the cathode at lower pressure and electricity is generated. The solar heater may be a solar water heater and the hot water may heat the metal hydride reservoirs to move the hydrogen. The working fluid may move in a closed loop.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: August 17, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Peter Golben, William Parmelee, Scott Fackler
  • Publication number: 20210060493
    Abstract: Composite polyether block amide (PEBA) copolymer tubes incorporate an ultra-thin PEBA layer that enables rapid moisture transfer and exchange through the tube. A composite PEBA film may include a porous scaffold support and may be formed or incorporated into the composite PEBA tube. A porous scaffold support may be coated or imbibed with PEBA to form a composite PEBA film. A composite PEBA film may be wrapped on a mandrel or over a porous scaffold support to form a composite PEBA tube. A film layer may be applied over a wrapped composite PEBA film to secure the layers together. The film layer by applied by dipping, spraying or painting.
    Type: Application
    Filed: November 12, 2020
    Publication date: March 4, 2021
    Inventors: Bamdad Bahar, Taoli Gu, David McAndrews, Abhishek Bandlore, Zerby Sumner Jacob
  • Patent number: 10890344
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: January 12, 2021
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Kryiacos Zachary