Patents by Inventor Benjamin Park

Benjamin Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11777098
    Abstract: Systems and methods for conductive polymer monomers as cathode additives for silicon-based lithium ion batteries may include a silicon-based anode, an electrolyte, and a cathode. The cathode may include an active material and small amounts of dispersed conductive polymer monomer additive. The cathode active material may include one or more of nickel cobalt aluminum oxide (NCA), nickel cobalt manganese oxide (NCM), lithium iron phosphate (LFP), lithium cobalt oxide (LCO), and lithium manganese oxide (LMO). The conductive polymer monomer additive may any known monomer based on thiophene, aniline, and/or pyrrole core structures alone or in combination. The conductive polymer monomer additive may comprise 5% or less by weight of the active material, or 1% or less by weight of the active material, or 0.5% or less by weight of the active material.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 3, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park, Jose Vega
  • Patent number: 11764346
    Abstract: Systems and methods for silicon-dominant lithium-ion cells with controlled utilization of silicon may include a cathode, an electrolyte, and an anode, where the anode has an active material comprising more than 50% silicon. The battery may be charged by lithiating silicon while not lithiating carbon. The active material may comprise more than 70% silicon. A voltage of the anode during discharge of the battery may remain above a minimum voltage at which silicon can be lithiated. The anode may have a specific capacity of greater than 3000 mAh/g. The battery may have a specific capacity of greater than 1000 mAh/g. The anode may have a greater than 90% initial Coulombic efficiency and may be polymer binder free. The battery may be charged at a 10C rate or higher. The battery may be charged at temperatures below freezing without lithium plating. The electrolyte may comprise a liquid, solid, or gel.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: September 19, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Benjamin Park, Ian Browne, Sung Won Choi, Fred Bonhomme
  • Patent number: 11764350
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a thickness of the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: September 19, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
  • Patent number: 11728468
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a metal used for the current collector, and/or a lamination process that adheres the active material to the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: August 15, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
  • Patent number: 11721809
    Abstract: Additives for energy storage devices comprising compounds containing one or more silicate and/or organosilicon moieties are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Compounds containing silicate and/or organosilicon moieties may serve as additives to the first electrode, the second electrode and/or the electrolyte.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: August 8, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park
  • Publication number: 20230238507
    Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells. A slurry that includes silicon particles and a binder material may be applied to a current collector film, and the slurry may be processed to form a precursor composite film coated on the current collector film. The current collector film with the coated precursor composite film may be rolled into a precursor composite roll. A heat treatment may be applied to the current collector film with the coated precursor composite film in an environment including nitrogen gas, to convert the coated precursor composite film to a pyrolyzed composite film coated on the current collector film. The heat treatment may include applying the heat treatment to the precursor composite roll in whole and/or applying the heat treatment to the current collector film with the coated precursor composite film as it is continuously fed.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 27, 2023
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Patent number: 11710829
    Abstract: Systems and methods for water based phenolic binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a pyrolyzed water-based phenolic binder. The water-based phenolic binder may include phenolic/resol type polymers crosslinked with poly(methyl vinyl ether-alt-maleic anhydride), poly(methyl vinyl ether-alt-maleic acid), and/or Poly(acrylamide-co-diallyldimethylammonium chloride) (PDADAM). The electrode coating layer may further include conductive additives. The current collector may comprise one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may include more than 70% silicon. The electrode may be in electrical and physical contact with an electrolyte, where the electrolyte includes a liquid, solid, or gel. The battery electrode may be in a lithium ion battery.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: July 25, 2023
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Liwen Ji, Younes Ansari, Benjamin Park
  • Patent number: 11699786
    Abstract: Systems and methods for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and pyrolyzed water-soluble acidic polyamide imide as a primary resin carbon precursor. The electrode coating layer may include a pyrolyzed water-based acidic polymer solution additive. The polymer solution additive may include one or more of: polyacrylic acid (PAA) solution, poly (maleic acid, methyl methacrylate/methacrylic acid, butadiene/maleic acid) solutions, and water soluble polyacrylic acid. The electrode coating layer may include conductive additives. The current collector may include a metal foil, where the metal current collector includes one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may be more than 70% silicon.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: July 11, 2023
    Assignee: Enevate Corporation
    Inventors: Younes Ansari, Liwen Ji, Benjamin Park
  • Patent number: 11695104
    Abstract: Systems and methods for improved performance of silicon anode containing cells through formation may include a cathode, electrolyte, and silicon containing anode. The battery may be subjected to a formation process comprising one or more cycles of: charging the battery at a 1 C rate to 3.8 volts or greater until a current in the battery reaches C/20, and discharging the battery to 2.5 volts or less. The battery may comprise a lithium ion battery. The electrolyte may comprise a liquid, solid, or gel. The anode may comprise greater than 70% silicon. The battery may be discharged until the current reaches 0.2 C. The battery may be discharged at a 1 C rate or at a 0.2 C rate. The battery may be in a rest period between the charge and discharge.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: July 4, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Uday S. Kasavajjula, Benjamin Park, David J. Lee, SungWon Choi
  • Patent number: 11688848
    Abstract: Systems and methods for pulverization mitigation additives for silicon dominant anodes may include an electrode including a metal current collector and an active material layer on the current collector. The active material layer may include islands of material separated by cracks, where the islands may include silicon, pyrolyzed binder, and conductive additives. At least a portion of the additives bridge the cracks of the active material layer and the additives may include between 1% and 40% of the active material layer. The active material layer may include between 20% to 95% silicon. The conductive additives may include carbon nanotubes and/or graphene sheets. The conductive additives may include metal, such as one or more of: gallium, indium, copper, aluminum, lead, tin, and nickel. The metal may include a transition metal, and/or one or more semiconductors. The conductive additives may include long narrow filaments with an aspect ratio of 20 or greater.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: June 27, 2023
    Assignee: ENEVATE CORPORATION
    Inventor: Benjamin Park
  • Patent number: 11646449
    Abstract: Additives for energy storage devices comprising cyclodextrin-based compounds and their derivatives are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Cyclodextrin-based compounds may serve as additives to the first electrode, the second electrode, and/or the electrolyte.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: May 9, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park, Ho Jung Yang
  • Publication number: 20230124344
    Abstract: A clamping device for a multilayered battery comprising one or more electrochemical cells is provided. The clamping device can include one or more plates, guided elastic members, and/or one or more layers of an interfacial material, such as foam pads or papers, to provide distributed pressure across one or more surfaces of the multilayered battery during cell formation and/or cycling. A compression plate is employed to provide a compressive force to compress the elastic members to a predetermined length, at which the position of the elastic members can be fixed.
    Type: Application
    Filed: October 19, 2021
    Publication date: April 20, 2023
    Inventors: Sanjaya D. Perera, Xianyang Li, Eric Ibarra, Todd Tatar, Benjamin Park, Kirk Shockley
  • Patent number: 11631851
    Abstract: Systems and methods for multiple carbon precursors for enhanced battery electrode robustness may include an electrode having an active material, the active material including two or more carbon precursor materials, wherein the carbon precursor materials have different pyrolysis temperatures. A battery may include the electrode. The carbon precursor materials may include polyimide (PI) and polyamide-imide (PAI). The active material may be pyrolyzed at a temperature such that a first carbon precursor material is partially pyrolyzed and a second carbon precursor material is completely pyrolyzed. The carbon precursor materials may include two or more of PI, PAI, carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), and sodium alginate. The active material may include silicon constituting at least 50% of weight of a formed anode after pyrolysis. The active material may include silicon constituting up to 97% of weight of a formed electrode after pyrolysis.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: April 18, 2023
    Assignee: Enevate Corporation
    Inventors: Younes Ansari, Giulia Canton, Frederic Bonhomme, Benjamin Park
  • Publication number: 20230095171
    Abstract: Additives for energy storage devices comprising organic acid compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Organic acid compounds may serve as additives to the first electrode, the second electrode and/or the electrolyte.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 30, 2023
    Inventors: Liwen Ji, Benjamin Park, Jeremy Chang
  • Publication number: 20230101934
    Abstract: Additives for energy storage devices comprising cyclodextrin-based compounds and their derivatives are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Cyclodextrin-based compounds may serve as additives to the first electrode, the second electrode, and/or the electrolyte.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 30, 2023
    Inventors: Liwen Ji, Benjamin Park, Ho Jung Yang
  • Publication number: 20230096965
    Abstract: Additives for energy storage devices comprising compounds containing one or more silicate and/or organosilicon moieties are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Compounds containing silicate and/or organosilicon moieties may serve as additives to the first electrode, the second electrode and/or the electrolyte.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 30, 2023
    Inventors: Liwen Ji, Benjamin Park
  • Patent number: 11616235
    Abstract: Systems and methods for batteries comprising a cathode, an electrolyte, and an anode, wherein one or both electrodes contain a functional lithiated agent-containing additive.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: March 28, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Younes Ansari, Benjamin Park
  • Patent number: 11600809
    Abstract: Systems and methods for thermal gradient during electrode pyrolysis may include fabricating the battery electrode by pyrolyzing an active material on a metal current collector, wherein the active material comprises silicon particles in a binder material, the binder material being pyrolyzed such that a resistance at an inner surface of the active material in contact with the current collector is at least 50% higher than a resistance at an outer surface of the active material. The active material may be pyrolyzed by electromagnetic radiation, which may be provided by one or more lasers, which may include one or more CO2 lasers. The electromagnetic radiation may be provided by one or more infrared lamps. An outer edge of the current collector may be gripped using a thermal transfer block that removes heat from the current collector during pyrolysis of the active material and subsequent cool down.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: March 7, 2023
    Assignee: Enevate Corporation
    Inventors: Jill Renee Pestana, Benjamin Park, Michael Buet, Giulia Canton
  • Patent number: 11594714
    Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells and may include applying a slurry to a current collector film, the slurry comprising silicon particles and a binder material; drying the slurry to form a precursor composite film; rolling the current collector film into a precursor composite roll; and applying a heat treatment to the precursor composite film and the current collector film in a nitrogen gas environment, wherein the heat treatment is configured for converting the precursor composite film to a pyrolyzed composite film. The heat treatment may include one or both of: applying the heat treatment to a roll comprising the precursor composite roll in whole; and applying the heat treatment to the current collector film as it is continuously fed from the precursor composite roll.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 28, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Publication number: 20230056009
    Abstract: Systems and methods for all-conductive battery electrodes may include an electrode coating layer on a current collector, where the electrode coating layer comprises more than 50% silicon, and where each material in the electrode has a resistivity of less than 100 ?-cm. The silicon may have a resistivity of less than 10 ?-cm, less than 1 ?-cm, or less than 1 m?-cm. The electrode coating layer may comprise pyrolyzed carbon and/or conductive additives. The current collector comprises a metal foil. The metal current collector may comprise one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer comprises more than 70% silicon. The electrode may be in electrical and physical contact with an electrolyte. The electrolyte may comprise a liquid, solid, or gel. The battery electrode may be in a lithium ion battery.
    Type: Application
    Filed: November 7, 2022
    Publication date: February 23, 2023
    Inventor: Benjamin Park