Patents by Inventor Benjamin Park

Benjamin Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230029191
    Abstract: Systems and methods for batteries comprising a cathode, an electrolyte, and an anode, where prelithiation reagents are utilized to treat one or more of the anode and cathode. In one embodiment, the prelithiation reagent is a Li-organic complex solution comprising naphthalene and metallic lithium dissolved in an inhibitor-free THF.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 26, 2023
    Inventors: Younes Ansari, Liwen Ji, Heidi Anderson, Benjamin Park, Vincent Giordani
  • Patent number: 11563253
    Abstract: A method for formation of cylindrical and prismatic can cells may include providing a battery, where the battery includes one or more cells, with each cell including at least one silicon-dominant anode, a cathode, and a separator. The battery also includes a metal can that contains the one or more cells such that during formation a pressure between 50 kPa and 1 MPa is applied to the one or more cells. The battery may include strain absorbing materials arranged between the one or more cells and interior walls of the can. The strain absorbing materials may include foam. The strain absorbing materials may include a solid electrolyte layer. The strain absorbing materials may include PMMA, PVDF, or a combination thereof. The pressure during a formation process may be due to a thickness of the strain absorbing materials being thicker than an expansion of the one or more cells.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 24, 2023
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Benjamin Park
  • Publication number: 20230021271
    Abstract: A method for formation of cylindrical and prismatic can cells may include providing a battery, where the battery includes one or more cells, with each cell including at least one silicon-dominant anode, a cathode, and a separator. The battery also includes a metal can that contains the one or more cells such that during formation a pressure between 50 kPa and 1 MPa is applied to the one or more cells. The battery may include strain absorbing materials arranged between the one or more cells and interior walls of the can. The strain absorbing materials may include foam. The strain absorbing materials may include a solid electrolyte layer. The strain absorbing materials may include PMMA, PVDF, or a combination thereof. The pressure during a formation process may be due to a thickness of the strain absorbing materials being thicker than an expansion of the one or more cells.
    Type: Application
    Filed: July 15, 2021
    Publication date: January 19, 2023
    Inventors: Sanjaya D. Perera, Benjamin Park
  • Patent number: 11552334
    Abstract: Additives for energy storage devices comprising nitrogen-containing compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Nitrogen-containing compounds may serve as additives to the first electrode, the second electrode, and/or the electrolyte, as well as the separator.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: January 10, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park, Ambica Nair
  • Publication number: 20230006198
    Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.
    Type: Application
    Filed: September 13, 2022
    Publication date: January 5, 2023
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
  • Patent number: 11545656
    Abstract: Systems and methods for electrode lamination using overlapped irregular shaped active material may include a battery having a cathode, an electrolyte, and an anode, with the anode including an active material on a metal current collector. The active material may include a plurality of irregularly shaped pieces bonded to the metal current collector, and may include silicon, carbon, and a pyrolyzed polymer. The active material may include more than 50% silicon by weight. The plurality of irregularly shaped pieces may be roll press laminated to the metal current collector. Gaps may remain between some of the irregularly shaped pieces of active material. The gaps may absorb strain in the active material during lithiation of the anode. The metal current collector may include a copper or nickel foil. Portions of the metal current collector not covered by active material may be protected by an adhesive or inorganic layer.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 3, 2023
    Assignee: ENEVATE CORPORATION
    Inventor: Benjamin Park
  • Publication number: 20220393174
    Abstract: Additives for energy storage devices comprising crown ethers are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Crown ether compounds may serve as additives to the first electrode and/or the second electrode, as well as the separator.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 8, 2022
    Inventors: Liwen Ji, Benjamin Park
  • Patent number: 11522193
    Abstract: Systems and methods utilizing water soluble (aqueous) PAA-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a pyrolyzed water soluble PAA-based polymer blend, wherein the water soluble PAA-based polymer blend comprises PAA and one or more additional water-soluble polymer components. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: December 6, 2022
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Benjamin Park, Younes Ansari
  • Publication number: 20220367847
    Abstract: A method and system for carbon-coated silicon in a pyrolyzed carbon binder electrode on copper current collectors may include providing a metal current collector; forming a non-porous carbon coating on the metal current collector; coating silicon particles with carbon; forming an active material layer on the metal current collector, where the active material layer comprises at least 50% silicon particles by weight and a carbon source; and pyrolyzing the active material layer on the metal current collector, with no silicon particles in contact with metal from the metal current collector. The metal current collector may include copper. The battery anode may include no copper-silicon eutectic. The silicon particles may range in size from 2 to 50 ?m. The active material layer may include aluminum carbide. A source for the pyrolyzed carbon may include polyimide and/or polyamide-imide. The current collector may be coated with the non-porous carbon coating using physical vapor deposition.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 17, 2022
    Inventors: Benjamin Park, Jill Pestana, Ian Browne, Younes Ansari, Sanjaya D. Perera
  • Patent number: 11502304
    Abstract: Systems and methods are disclosed that provide for pyrolysis reactions to be performed at reduced temperatures that convert non-conductive precursor polymers to conductive carbon suitable for use in electrode materials, which may be incorporated into a cathode, an electrolyte, and an anode, where the pyrolysis method may include one or more catalysts or reactive reagents.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: November 15, 2022
    Assignee: Enevate Corporation
    Inventors: Ian Browne, Benjamin Park, Giulia Canton, Frederic Bonhomme
  • Patent number: 11502286
    Abstract: Systems and methods for all-conductive battery electrodes may include an electrode coating layer on a current collector, where the electrode coating layer comprises more than 50% silicon, and where each material in the electrode has a resistivity of less than 100 ?-cm. The silicon may have a resistivity of less than 10 ?-cm, less than 1 ?-cm, or less than 1 m?-cm. The electrode coating layer may comprise pyrolyzed carbon and/or conductive additives. The current collector comprises a metal foil. The metal current collector may comprise one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer comprises more than 70% silicon. The electrode may be in electrical and physical contact with an electrolyte. The electrolyte may comprise a liquid, solid, or gel. The battery electrode may be in a lithium ion battery.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: November 15, 2022
    Assignee: ENEVATE CORPORATION
    Inventor: Benjamin Park
  • Patent number: 11502293
    Abstract: A method and system for copper coated anode active material may include providing a metal current collector; an active material layer on the current collector, the active material layer comprising at least 50% silicon by weight, a pyrolyzed carbon source; and a layer of metal on the active material layer that increases conductivity of the layer. The surface may be opposite to a surface of the active material layer that is coupled to the current collector. The layer of metal may comprise copper. The silicon may comprise particles ranging in size from 2 to 50 ?m. The metal layer may comprise islands of metal on the silicon particles. The islands of metal may have a thickness of 100 nm or less. The islands of metal may be less than 50 ?m across. A conductivity of the anode active material layer and layer of metal may be less than 2×10?5 ?-cm.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: November 15, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Mya Le Thai, Benjamin Park, Heidi Anderson
  • Patent number: 11491139
    Abstract: Yes-associated protein (Yap), a downstream co-activator of the Hippo pathway, is highly expressed in the Treg cell subset, and is critical to maintain its suppressive activity. Originally discovered in Drosophila melanogaster, the Hippo signaling pathway is a major regulator of cellular growth and proliferation in mammals. Loss of Yap expression in Treg cells can lead to superior anti-tumor immune responses, and thus, Yap is an important immunotherapeutic target for cancer.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 8, 2022
    Assignee: The Johns Hopkins University
    Inventors: Fan Pan, Duojia Pan, Drew M. Pardoll, Joseph Barbi, Benjamin Park
  • Publication number: 20220336871
    Abstract: A method for periodic deep discharge to extract lithium in silicon-dominant anodes may include providing a cell comprising a cathode, a separator, and a silicon-dominant anode; charging and discharging the cell through a plurality of cycles; and, following the plurality of cycles, performing one or more deep discharge cycles, where each of the one or more deep discharge cycles comprises a cutoff voltage below a normal operating voltage range of the cell. The one or more deep discharge cycles may comprise a C/10 or lower or C/20 or lower discharge current. The one or more deep discharge cycles may include a cutoff voltage of 3.2 V or less, a cutoff voltage of 2.5 V or less, a cutoff voltage of 1.5 V or less, or a cutoff voltage of 1 V or less. The cell may be configured at a higher temperature during the one or more deep discharge cycles.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 20, 2022
    Inventors: Hong Zhao, Benjamin Park
  • Patent number: 11469449
    Abstract: Additives for energy storage devices comprising phosphorus-containing compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Phosphorus-containing compounds may serve as additives to the first electrode, the second electrode and/or the electrolyte, as well as the separator.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: October 11, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park
  • Patent number: 11456457
    Abstract: Systems and methods for aromatic macrocyclic compounds (Phthalocyanines) as cathode additives for inhibition of transition metal dissolution and stable solid electrolyte interphase formation may include an anode, an electrolyte, and a cathode, where the cathode comprises an active material and a phthalocyanine additive, the additive being coordinated with different metal cationic center and functional groups. The active material may comprise one or more of: nickel cobalt aluminum oxide, nickel cobalt manganese oxide, lithium iron phosphate, lithium cobalt oxide, and lithium manganese oxide, Ni-rich layered oxides LiNi1?xMxO2 where M=Co, Mn, or Al, Li-rich xLi2MnO3(1?x)LiNiaCobMncO2, Li-rich layered oxides LiNi1+xM1?O2 where M=Co, Mn, or Ni, and spinel oxides LiNi0.5Mn1.5O4.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: September 27, 2022
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Liwen Ji, Jeremy Chang, Benjamin Park
  • Publication number: 20220302439
    Abstract: A method and system for copper coated anode active material may include providing a metal current collector; an active material layer on the current collector, the active material layer comprising at least 50% silicon by weight, a pyrolyzed carbon source; and a layer of metal on the active material layer that increases conductivity of the layer. The surface may be opposite to a surface of the active material layer that is coupled to the current collector. The layer of metal may comprise copper. The silicon may comprise particles ranging in size from 2 to 50 ?m. The metal layer may comprise islands of metal on the silicon particles. The islands of metal may have a thickness of 100 nm or less. The islands of metal may be less than 50 ?m across. A conductivity of the anode active material layer and layer of metal may be less than 2×10?5 ?-cm.
    Type: Application
    Filed: March 17, 2021
    Publication date: September 22, 2022
    Inventors: Mya Le Thai, Benjamin Park, Heidi Anderson
  • Publication number: 20220302430
    Abstract: Systems and methods are provided for high volume roll-to-roll transfer lamination of electrodes for silicon-dominant anode cells.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Patent number: 11450850
    Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 20, 2022
    Assignee: Enevate Corporation
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
  • Publication number: 20220285749
    Abstract: Methods and systems are provided for key predictors and machine learning for configuring cell performance. One or more parameters relating to operation of a cell may be measured, via a measurement apparatus, with the cell including a cathode, a separator, and a silicon-dominant anode, and cell performance may be managed, based on the one or more parameters, with the managing including assessing the cell performance using a machine learning model. The cell may be within a battery pack that includes a plurality of cells, each of which including a cathode, a separator, and a silicon-dominant anode. One or more of the plurality of cells from the battery pack in response to a determination, based on the assessing, of a different performance of the one or more of the plurality of cells. The battery pack may be in an electric vehicle.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 8, 2022
    Inventors: Sam Keene, Giulia Canton, Ian Browne, Xianyang Li, Hong Zhao, Benjamin Park