Patents by Inventor Benjamin Park

Benjamin Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220283243
    Abstract: Methods and systems are provided for key predictors and machine learning for configuring cell performance. One or more parameters relating to the cell may be measured, via a measurement apparatus, with the cell including a cathode, a separator, and a silicon-dominant anode, and the cell may be managed, based on the one or more parameters, with the managing including predetermining cycle life of the cell based on the one or more parameters using a machine learning model. The cell may be within a battery pack that includes a plurality of cells. The battery pack may be in an electric vehicle. At least one parameter may be measured before a formation process of the cell. At least one parameter may be measured during the formation process. At least one parameter may be measured during cycling of the cell.
    Type: Application
    Filed: April 8, 2022
    Publication date: September 8, 2022
    Inventors: Sam Keene, Giulia Canton, Ian Browne, Xianyang Li, Hong Zhao, Benjamin Park
  • Publication number: 20220285723
    Abstract: Systems and methods provide for safety of silicon dominant anodes in a battery. The battery may include an anode comprising an anode active material layer on a metal current collector, where the anode active material layer comprises pyrolyzed binder, conductive additives, and 50% or more silicon by weight. The battery may further include a separator, an electrolyte, a cathode, and a solid electrolyte interface between the anode active material layer and the electrolyte, and has a thermal runaway temperature of greater than 260° C. The conductive additives may comprise between 1% and 40% of the active material layer. The anode active material layer may comprise between 20% to 95% silicon. The separator may comprise ceramic-coated polyolefin or polymer-coated polyolefin. The electrolyte may comprise Lithium hexafluorophosphate (LiPF6) and/or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in one or more electrolyte solvents. The metal current collector may comprise copper.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 8, 2022
    Inventors: Benjamin Park, Hong Zhao, Heidi Anderson, Mya Le Thai
  • Patent number: 11431027
    Abstract: Single Li-ion conducting solid-state polymer electrolytes for use in energy storage devices are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte. Electrolytes may include all-solid-state polymer electrolytes, quasi-solid polymer electrolytes and/or polymer gel electrolytes. The single Li-ion conducting solid-state polymer electrolytes can improve the electrochemical performances and safety of Si anode-based Li-ion batteries.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: August 30, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park
  • Publication number: 20220263059
    Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee
  • Publication number: 20220255053
    Abstract: Systems and methods for pulverization mitigation additives for silicon dominant anodes may include an electrode including a metal current collector and an active material layer on the current collector. The active material layer may include islands of material separated by cracks, where the islands may include silicon, pyrolyzed binder, and conductive additives. At least a portion of the additives bridge the cracks of the active material layer and the additives may include between 1% and 40% of the active material layer. The active material layer may include between 20% to 95% silicon. The conductive additives may include carbon nanotubes and/or graphene sheets. The conductive additives may include metal, such as one or more of: gallium, indium, copper, aluminum, lead, tin, and nickel. The metal may include a transition metal, and/or one or more semiconductors. The conductive additives may include long narrow filaments with an aspect ratio of 20 or greater.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Inventor: Benjamin Park
  • Patent number: 11387443
    Abstract: Silicon-dominate battery electrodes, battery cells utilizing the silicon-dominate battery electrodes, and methods of manufacturing are disclosed. Such a battery cell includes a cathode, a separator, an electrolyte, and an anode. The anode comprises a current collector and active material on the current collector. The active material layer includes at least 50% silicon. A ratio of the electrolyte to Ah is over 2 g/Ah.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: July 12, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Hong Zhao, Younes Ansari, Vincent Giordani, Mya Le Thai, Qing Zhang, Benjamin Park
  • Publication number: 20220209227
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising fluorinated cyclic compounds.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Inventors: Liwen Ji, Benjamin Park
  • Patent number: 11362315
    Abstract: Systems and methods are provided for high volume roll-to-roll transfer lamination of electrodes for silicon-dominant anode cells.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: June 14, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Publication number: 20220173380
    Abstract: Systems and methods for generating silicon carbon composite powder that have the electrical properties of thicker, active material silicon carbon composite films or carbon composite electrodes, and may include a cathode, an electrolyte, and an anode, where the electrodes may include silicon carbon composite powder.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventor: Benjamin Park
  • Patent number: 11329267
    Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 10, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee
  • Publication number: 20220140314
    Abstract: Systems and methods for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and pyrolyzed water-soluble acidic polyamide imide as a primary resin carbon precursor. The electrode coating layer may include a pyrolyzed water-based acidic polymer solution additive. The polymer solution additive may include one or more of: polyacrylic acid (PAA) solution, poly (maleic acid, methyl methacrylate/methacrylic acid, butadiene/maleic acid) solutions, and water soluble polyacrylic acid. The electrode coating layer may include conductive additives. The current collector may include a metal foil, where the metal current collector includes one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may be more than 70% silicon.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Inventors: Younes Ansari, Liwen Ji, Benjamin Park
  • Publication number: 20220131193
    Abstract: Electrode or electrolyte additives for energy storage devices comprising symmetrical or asymmetrical alkylsulfonyl imide or cyclic alkylene sulfonylimide salts are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Symmetrical or asymmetrical alkylsulfonyl imide or cyclic alkylene sulfonylimide salts may serve as additives to the electrodes or to the electrolyte composition, or both.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 28, 2022
    Inventors: Liwen Ji, Benjamin Park
  • Publication number: 20220131194
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising metal amide bases are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode and an electrolyte composition comprising at least one electrolyte additive comprising a metal amide base compound.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 28, 2022
    Inventors: Liwen Ji, Benjamin Park, Younes Ansari
  • Publication number: 20220131148
    Abstract: Electrodes, electrolytes and/or separators for energy storage devices comprising functional boron-containing chemicals are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Functional boron-containing chemicals may serve as additives to one or more of the electrodes, electrolyte and/or separator.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 28, 2022
    Inventors: Liwen Ji, Benjamin Park, Hong Zhao
  • Publication number: 20220123278
    Abstract: Systems and methods for thermal gradient during electrode pyrolysis may include fabricating the battery electrode by pyrolyzing an active material on a metal current collector, wherein the active material comprises silicon particles in a binder material, the binder material being pyrolyzed such that a resistance at an inner surface of the active material in contact with the current collector is at least 50% higher than a resistance at an outer surface of the active material. The active material may be pyrolyzed by electromagnetic radiation, which may be provided by one or more lasers, which may include one or more CO2 lasers. The electromagnetic radiation may be provided by one or more infrared lamps. An outer edge of the current collector may be gripped using a thermal transfer block that removes heat from the current collector during pyrolysis of the active material and subsequent cool down.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Inventors: Jill Renee Pestana, Benjamin Park, Michael Buet, Giulia Canton
  • Publication number: 20220115651
    Abstract: Systems and methods utilizing aqueous-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a water soluble polymer and may comprise one or more of the following materials: pH modifiers, viscosity modifiers, strengthening additives, surfactants and anti-foaming agents. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Inventors: Younes Ansari, Benjamin Park, Sanjaya Perera, Qing Zhang, Anil Malhotra, Ambica Nair, Rahul Kamath, Ian Browne, Frederic Bonhomme
  • Patent number: 11300631
    Abstract: A method for key predictors and machine learning for configuring battery cell performance may include providing a cell that includes a cathode, a separator, and a silicon-dominant anode; measuring a plurality of parameters of the cell; and using a machine learning model to determine cycle life based on the plurality of measured parameters, where one of the measured parameters includes second cycle coulombic efficiency. The plurality of parameters may include initial coulombic efficiency, cell impedance values, open-circuit voltage, cell thickness, and impedance after degassing. A first subset of the plurality of parameters may be measured before a formation process. A second subset of the plurality of parameters may be measured during a formation process, where the plurality of parameters may include a voltage reached during a first 10% of a first formation cycle. A third subset of the plurality of parameters may be measured during cycling of the cell.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 12, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Sam Keene, Giulia Canton, Ian Browne, Xianyang Li, Hong Zhao, Benjamin Park
  • Publication number: 20220102697
    Abstract: Systems and methods are provided for direct coating of electrodes using pyrolysis of flat sheets in silicon-dominant anode cells. A plurality of flat electrode sheets may be formed, and at least a portion of the plurality of flat electrode sheets may be arranged into one or more stacks of flat electrode sheets. Each stack of flat electrode sheets may be placed onto a flat pyrolysis boat, and heat treatment (e.g., pyrolysis) may be applied to each flat pyrolysis boat. Forming of the flat electrode sheets may include use of cutting, punching, and/or notching, such as doing so based on predetermined electrode shapes and/or dimensions. The forming and/or arranging of the flat electrode sheets may be based on one or more predetermined criteria or considerations, such as shrinkage or expansion during the heat treatment.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Frederic Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, Ian Browne, Todd Tatar
  • Publication number: 20220102713
    Abstract: Systems and methods utilizing aqueous-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a water soluble polymer and may comprise one or more of the following materials: pH modifiers, viscosity modifiers, strengthening additives, surfactants and anti-foaming agents. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Younes Ansari, Benjamin Park, Sanjaya Perera, Qing Zhang, Anil Malhotra, Ambica Nair, Rahul Kamath, Lan Browne, Frederic Bonhomme
  • Patent number: 11283114
    Abstract: A method for key predictors and machine learning for configuring battery cell performance may include providing a cell that may include a cathode, a separator, and a silicon-dominant anode; measuring a plurality of parameters of the cell; and using a machine learning model to determine cell performance based on the plurality of measured parameters. The plurality of parameters may include initial coulombic efficiency and/or second cycle coulombic efficiency. Cells may be classified based on the determined cell performance and similarly performing cells may be binned together. A battery pack may be provided with a plurality of cells. The plurality of cells may be assessed during cycling using the machine learning model. One or more of the plurality of cells may be replaced when the assessing determines a different performance of the one or more of the plurality of cells. The battery pack may be in an electric vehicle.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 22, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Sam Keene, Giulia Canton, Ian Browne, Xianyang Li, Hong Zhao, Benjamin Park