Patents by Inventor Biswajeet Guha

Biswajeet Guha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240304619
    Abstract: An IC device includes a backside FTI separating a first transistor from a second transistor. The FTI may be between a source region of the first transistor and a drain region of the second transistor. The source region of the first transistor and the drain region of the second transistor may be different portions of a semiconductor structure, e.g., a fin or nanoribbon. The IC device may also include a frontside metal layer. The semiconductor structure may have a first surface and a second surface opposing the first surface. The first surface of the semiconductor structure may be closer to the metal layer and larger than the second surface of the semiconductor structure. The FTI may have a first surface and a second surface opposing the first surface. The first surface of the FTI may be closer to the metal layer but smaller than the second surface of the FTI.
    Type: Application
    Filed: March 9, 2023
    Publication date: September 12, 2024
    Inventors: Guowei Xu, Chiao-Ti Huang, Robin Chao, Tao Chu, Feng Zhang, Yang Zhang, Biswajeet Guha, Oleg Golonzka
  • Publication number: 20240304621
    Abstract: Fabrication method for nanoribbon-based transistors and associated transistor arrangements, IC structures, and devices are disclosed. An example fabrication method is based on patterning a foundation over which a superlattice is provided so that a single superlattice may be used to form both PMOS and NMOS stacks of nanoribbons. An example IC structure includes a support, an NMOS stack of nanoribbons stacked vertically above one another over the support, and a PMOS stack of nanoribbons stacked vertically above one another over the support, wherein at least one of the nanoribbons of the NMOS stack is vertically offset with respect to at least one of the nanoribbons of the PMOS stack.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 12, 2024
    Applicant: Intel Corporation
    Inventors: Chiao-Ti Huang, Tao Chu, Robin Chao, Guowei Xu, Feng Zhang, Biswajeet Guha, Stephen M. Cea
  • Publication number: 20240290788
    Abstract: A metal gate fabrication method for nanoribbon-based transistors and associated transistor arrangements, IC structures, and devices are disclosed. An example IC structure fabricated using metal gate fabrication method described herein may include a first stack of N-type nanoribbons, a second stack of P-type nanoribbons, a first gate region enclosing portions of the nanoribbons of the first stack and including an NWF material between adjacent nanoribbons of the first stack, and a second gate region enclosing portions of the nanoribbons of the second stack and including a PWF material between adjacent nanoribbons of the second stack, where the second gate region includes the PWF material at sidewalls of the nanoribbons of the second stack and further includes the NWF material so that the PWF material is between the sidewalls of the nanoribbons of the second stack and the NWF material.
    Type: Application
    Filed: February 28, 2023
    Publication date: August 29, 2024
    Applicant: Intel Corporation
    Inventors: Guowei Xu, Tao Chu, Chiao-Ti Huang, Robin Chao, David Towner, Orb Acton, Omair Saadat, Feng Zhang, Dax M. Crum, Yang Zhang, Biswajeet Guha, Oleg Golonzka, Anand S. Murthy
  • Patent number: 12068314
    Abstract: Gate-all-around integrated circuit structures having adjacent island structures are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A first vertical arrangement of horizontal nanowires is above a first fin protruding from the semiconductor substrate. A channel region of the first vertical arrangement of horizontal nanowires is electrically isolated from the fin. A second vertical arrangement of horizontal nanowires is above a second fin protruding from the semiconductor substrate. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. The semiconductor island is between the first vertical arrangement of horizontal nanowires and the second vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: August 20, 2024
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, William Hsu, Biswajeet Guha, Martin Weiss, Apratim Dhar, William T. Blanton, John H. Irby, IV, James F. Bondi, Michael K. Harper, Charles H. Wallace, Tahir Ghani, Benedict A. Samuel, Stefan Dickert
  • Publication number: 20240276734
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Application
    Filed: August 12, 2023
    Publication date: August 15, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Biswajeet Guha, Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20240274651
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Application
    Filed: August 11, 2023
    Publication date: August 15, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Biswajeet Guha, Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20240276735
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Application
    Filed: August 12, 2023
    Publication date: August 15, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Biswajeet Guha, Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20240266353
    Abstract: Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating gate-all-around integrated circuit structures having depopulated channel structures using a bottom-up approach, are described. For example, integrated circuit structure includes a first vertical arrangement of nanowires and a second vertical arrangement of nanowires above a substrate. The first vertical arrangement of nanowires has a greater number of nanowires than the second vertical arrangement of nanowires. The first vertical arrangement of nanowires has an uppermost nanowire co-planar with an uppermost nanowire of the second vertical arrangement of nanowires. The first vertical arrangement of nanowires has a bottommost nanowire below a bottommost nanowire of the second vertical arrangement of nanowires. A first gate stack is over the first vertical arrangement of nanowires. A second gate stack is over the second vertical arrangement of nanowires.
    Type: Application
    Filed: April 2, 2024
    Publication date: August 8, 2024
    Inventors: Dax M. CRUM, Biswajeet GUHA, Leonard GULER, Tahir GHANI
  • Patent number: 12057491
    Abstract: Self-aligned gate endcap (SAGE) architectures with gate-all-around devices above insulator substrates, and methods of fabricating self-aligned gate endcap (SAGE) architectures with gate-all-around devices above insulator substrates, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above an insulator substrate and having a length in a first direction. A gate structure is around the semiconductor nanowire, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate endcap isolation structures is included. The first of the pair of gate endcap isolation structures is directly adjacent to the first end of the gate structure, and the second of the pair of gate endcap isolation structures is directly adjacent to the second end of the gate structure.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 6, 2024
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, Dax M. Crum, Stephen M. Cea, Leonard P. Guler, Tahir Ghani
  • Publication number: 20240243203
    Abstract: Self-aligned gate endcap (SAGE) architectures with gate-all-around devices, and methods of fabricating self-aligned gate endcap (SAGE) architectures with gate-all-around devices, are described. In an example, an integrated circuit structure includes a semiconductor fin above a substrate and having a length in a first direction. A nanowire is over the semiconductor fin. A gate structure is over the nanowire and the semiconductor fin, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate endcap isolation structures is included, where a first of the pair of gate endcap isolation structures is spaced equally from a first side of the semiconductor fin as a second of the pair of gate endcap isolation structures is spaced from a second side of the semiconductor fin.
    Type: Application
    Filed: March 29, 2024
    Publication date: July 18, 2024
    Inventors: Biswajeet GUHA, William HSU, Leonard P. GULER, Dax M. CRUM, Tahir GHANI
  • Patent number: 12014959
    Abstract: Fabrication of narrow and wide structures based on lithographic patterning of exclusively narrow mask structures. Multi-patterning may be employed to define narrow mask structures. Wide mask structures may be derived through a process-based merging of multiple narrow mask structures. The merge may include depositing a cap layer over narrow structures, filling in minimum spaces. The cap layer may be removed leaving residual cap material only within minimum spaces. Narrow and wide structures may be etched into an underlayer based on a summation of the narrow mask structures and residual cap material. A plug pattern may further mask portions of the cap layer not completely filling space between adjacent mask structures. The underlayer may then be etched based on a summation of the narrow mask structures, plug pattern, and residual cap material. Such methods may be utilized to integrate nanoribbon transistors with nanowire transistors in an integrated circuit (IC).
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: June 18, 2024
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Mark Armstrong, Tahir Ghani, William Hsu
  • Patent number: 12002810
    Abstract: Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating gate-all-around integrated circuit structures having depopulated channel structures using a bottom-up approach, are described. For example, integrated circuit structure includes a first vertical arrangement of nanowires and a second vertical arrangement of nanowires above a substrate. The first vertical arrangement of nanowires has a greater number of nanowires than the second vertical arrangement of nanowires. The first vertical arrangement of nanowires has an uppermost nanowire co-planar with an uppermost nanowire of the second vertical arrangement of nanowires. The first vertical arrangement of nanowires has a bottommost nanowire below a bottommost nanowire of the second vertical arrangement of nanowires. A first gate stack is over the first vertical arrangement of nanowires. A second gate stack is over the second vertical arrangement of nanowires.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 4, 2024
    Assignee: Intel Corporation
    Inventors: Dax M. Crum, Biswajeet Guha, Leonard Guler, Tahir Ghani
  • Publication number: 20240178226
    Abstract: Gate-all-around integrated circuit structures having pre-spacer-deposition cut gates are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first gate stack is over the first vertical arrangement of horizontal nanowires, and a second gate stack is over the second vertical arrangement of horizontal nanowires. An end of the second gate stack is spaced apart from an end of the first gate stack by a gap. The integrated circuit structure also includes a dielectric structure having a first portion forming a gate spacer along sidewalls of the first gate stack, a second portion forming a gate spacer along sidewalls of the second gate stack, and a third portion completely filling the gap, the third portion continuous with the first and second portions.
    Type: Application
    Filed: February 9, 2024
    Publication date: May 30, 2024
    Inventors: Leonard P. GULER, Michael K. HARPER, William HSU, Biswajeet GUHA, Tahir GHANI, Niels ZUSSBLATT, Jeffrey Miles TAN, Benjamin KRIEGEL, Mohit K. HARAN, Reken PATEL, Oleg GOLONZKA, Mohammad HASAN
  • Patent number: 11990472
    Abstract: Gate-all-around integrated circuit structures having pre-spacer-deposition cut gates are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first gate stack is over the first vertical arrangement of horizontal nanowires, and a second gate stack is over the second vertical arrangement of horizontal nanowires. An end of the second gate stack is spaced apart from an end of the first gate stack by a gap. The integrated circuit structure also includes a dielectric structure having a first portion forming a gate spacer along sidewalls of the first gate stack, a second portion forming a gate spacer along sidewalls of the second gate stack, and a third portion completely filling the gap, the third portion continuous with the first and second portions.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: May 21, 2024
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Michael K. Harper, William Hsu, Biswajeet Guha, Tahir Ghani, Niels Zussblatt, Jeffrey Miles Tan, Benjamin Kriegel, Mohit K. Haran, Reken Patel, Oleg Golonzka, Mohammad Hasan
  • Patent number: 11984449
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having channel structures with sub-fin dopant diffusion blocking layers are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. The lower fin portion includes a dopant diffusion blocking layer on a first semiconductor layer doped to a first conductivity type. The upper fin portion includes a portion of a second semiconductor layer, the second semiconductor layer on the dopant diffusion blocking layer. An isolation structure is along sidewalls of the lower fin portion. A gate stack is over a top of and along sidewalls of the upper fin portion, the gate stack having a first side opposite a second side. A first source or drain structure at the first side of the gate stack.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: May 14, 2024
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand Murthy, Stephen Cea, Biswajeet Guha, Anupama Bowonder, Tahir Ghani
  • Publication number: 20240145598
    Abstract: Gate all around semiconductor devices, such as nanowire or nanoribbon devices, are described that include a low dielectric constant (“low-k”) material disposed between a first nanowire closest to the substrate and the substrate. This configuration enables gate control over all surfaces of the nanowires in a channel region of a semiconductor device via the high-k dielectric material, while also preventing leakage current from the first nanowire into the substrate.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: Bruce E. BEATTIE, Leonard GULER, Biswajeet GUHA, Jun Sung KANG, William HSU
  • Publication number: 20240145471
    Abstract: Gate-all-around structures having devices with source/drain-to-substrate electrical contact are described. An integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures is at first and second ends of the first vertical arrangement of horizontal nanowires. One or both of the first pair of epitaxial source or drain structures is directly electrically coupled to the first fin. A second vertical arrangement of horizontal nanowires is above a second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures is at first and second ends of the second vertical arrangement of horizontal nanowires. Both of the second pair of epitaxial source or drain structures is electrically isolated from the second fin.
    Type: Application
    Filed: January 9, 2024
    Publication date: May 2, 2024
    Inventors: Biswajeet GUHA, William HSU, Chung-Hsun LIN, Kinyip PHOA, Oleg GOLONZKA, Tahir GHANI, Kalyan KOLLURU, Nathan JACK, Nicholas THOMSON, Ayan KAR, Benjamin ORR
  • Publication number: 20240120335
    Abstract: Gate-all-around integrated circuit structures fabricated using alternate etch selective material, and the resulting structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is over the vertical arrangement of horizontal nanowires. A pair of dielectric spacers is along sides of the gate stack and over the vertical arrangement of horizontal nanowires. A metal oxide material is between adjacent ones of the vertical arrangement of horizontal nanowires at a location between the pair of dielectric spacers and the sides of the gate stack.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: Sudipto NASKAR, Biswajeet GUHA, William HSU, Bruce BEATTIE, Tahir GHANI
  • Publication number: 20240096896
    Abstract: Non-planar integrated circuit structures having mitigated source or drain etch from replacement gate process are described. For example, an integrated circuit structure includes a fin or nanowire. A gate stack is over the fin or nanowire. The gate stack includes a gate dielectric and a gate electrode. A first dielectric spacer is along a first side of the gate stack, and a second dielectric spacer is along a second side of the gate stack. The first and second dielectric spacers are over at least a portion of the fin or nanowire. An insulating material is vertically between and in contact with the portion of the fin or nanowire and the first and second dielectric spacers. A first epitaxial source or drain structure is at the first side of the gate stack, and a second epitaxial source or drain structure is at the second side of the gate stack.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Jun Sung KANG, Kai Loon CHEONG, Erica J. THOMPSON, Biswajeet GUHA, William HSU, Dax M. CRUM, Tahir GHANI, Bruce BEATTIE
  • Publication number: 20240088132
    Abstract: An integrated circuit structure includes a sub-fin having (i) a first portion including a p-type dopant and (ii) a second portion including an n-type dopant. A first body of semiconductor material is above the first portion of the sub-fin, and a second body of semiconductor material is above the second portion of the sub-fin. In an example, the first portion of the sub-fin and the second portion of the sub-fin are in contact with each other, to form a PN junction of a diode. For example, the first portion of the sub-fin is part of an anode of the diode, and wherein the second portion of the sub-fin is part of a cathode of the diode.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Ayan Kar, Chu-Hsin Liang, Benjamin Orr, Biswajeet Guha, Brian Greene, Chung-Hsun Lin, Sabih U. Omar, Sameer Jayanta Joglekar