Patents by Inventor Brad Eaton

Brad Eaton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230207393
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Application
    Filed: March 2, 2023
    Publication date: June 29, 2023
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Patent number: 11621194
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: April 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Patent number: 11355394
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. Subsequent to patterning the mask, a breakthrough treatment is performed, the breakthrough treatment comprising a first physical bombardment operation, a second iterative isotropic and directional plasma etch operation, and a third directional breakthrough operation. Subsequent to performing the breakthrough treatment, the semiconductor wafer is plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: June 7, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Ajay Kumar
  • Publication number: 20220097190
    Abstract: An assembly for controlling waste material during a hybrid subtractive and additive manufacturing process is disclosed, including a machining tool held in a holder, a shroud disposed around the machining tool, and one or more ports configured to create a negative pressure within the shroud. A method of constraining waste material during a hybrid subtractive and additive manufacturing process of a part includes adding an amount of material to a part being additively manufactured, transforming the amount of material that was added, manipulating a tool to machine a portion of the part being additively manufactured and generating a waste material, sealing a portion of the tool and covering a portion of the part with a shroud, and applying a negative pressure to create an airflow to prevent the waste material from exiting the shroud.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 31, 2022
    Inventors: Stephen T. Connor, Fabio Zurcher, Brad Eaton, Matthew McKay
  • Patent number: 11217536
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a split laser beam laser scribing process, such as a split shaped laser beam laser scribing process, to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jungrae Park, Wei-Sheng Lei, Brad Eaton, James S. Papanu, Ajay Kumar
  • Patent number: 11158540
    Abstract: Light-absorbing masks and methods of dicing semiconductor wafers are described. In an example, a method of dicing a semiconductor wafer including a plurality of integrated circuits involves forming a mask above the semiconductor wafer. The mask includes a water-soluble matrix based on a solid component and water, and a light-absorber species throughout the water-soluble matrix. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask with gaps and corresponding trenches in the semiconductor wafer in regions between the integrated circuits. The semiconductor wafer is plasma etched through the gaps in the patterned mask to extend the trenches and to singulate the integrated circuits. The patterned mask protects the integrated circuits during the plasma etching.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: October 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Wenguang Li, James S. Papanu, Wei-Sheng Lei, Prabhat Kumar, Brad Eaton, Ajay Kumar, Alexander N. Lerner
  • Publication number: 20210134676
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 6, 2021
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Patent number: 10910271
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: February 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Publication number: 20200286787
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Publication number: 20200258780
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a plasma etch apparatus includes a plasma etch chamber. The plasma etch chamber includes a plasma source disposed in an upper region of the plasma etch chamber, a cathode assembly disposed below the plasma source, and a support pedestal for supporting a substrate carrier below the plasma source. The plasma etch apparatus also includes a transfer chamber coupled to the plasma etch chamber. The transfer chamber includes a transfer arm for supporting a substantial portion of a dicing tape of the substrate carrier, the transfer arm configured to transfer a sample from the support pedestal following an etch singulation process.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: James M. Holden, Alexander N. Lerner, Ajay Kumar, Brad Eaton, Aparna Iyer
  • Patent number: 10714390
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Patent number: 10692765
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a plasma etch apparatus includes a plasma etch chamber. The plasma etch chamber includes a plasma source disposed in an upper region of the plasma etch chamber, a cathode assembly disposed below the plasma source, and a support pedestal for supporting a substrate carrier below the plasma source. The plasma etch apparatus also includes a transfer chamber coupled to the plasma etch chamber. The transfer chamber includes a transfer arm for supporting a substantial portion of a dicing tape of the substrate carrier, the transfer arm configured to transfer a sample from the support pedestal following an etch singulation process.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: June 23, 2020
    Assignee: Applied Materials, Inc.
    Inventors: James M. Holden, Alexander N. Lerner, Ajay Kumar, Brad Eaton, Aparna Iyer
  • Patent number: 10661383
    Abstract: Methods of dicing semiconductor wafers are described. In an example, a method of dicing a wafer having a plurality of integrated circuits thereon involves dicing the wafer into a plurality of singulated dies disposed above a dicing tape. The method also involves forming a material layer over and between the plurality of singulated dies above the dicing tape. The method also includes expanding the dicing tape, wherein a plurality of particles is collected on the material layer during the expanding.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 26, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Jungrae Park, Ajay Kumar, Brad Eaton
  • Publication number: 20200118880
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Publication number: 20200091001
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. Subsequent to patterning the mask, a breakthrough treatment is performed, the breakthrough treatment comprising a first physical bombardment operation, a second iterative isotropic and directional plasma etch operation, and a third directional breakthrough operation. Subsequent to performing the breakthrough treatment, the semiconductor wafer is plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: July 19, 2019
    Publication date: March 19, 2020
    Inventors: Wei-Sheng Lei, Brad Eaton, Ajay Kumar
  • Patent number: 10566238
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Publication number: 20190291206
    Abstract: Methods of dicing semiconductor wafers are described. In an example, a method of dicing a wafer having a plurality of integrated circuits thereon involves dicing the wafer into a plurality of singulated dies disposed above a dicing tape. The method also involves forming a material layer over and between the plurality of singulated dies above the dicing tape. The method also includes expanding the dicing tape, wherein a plurality of particles is collected on the material layer during the expanding.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Inventors: Wei-Sheng Lei, Jungrae Park, Ajay Kumar, Brad Eaton
  • Patent number: 10363629
    Abstract: Methods of dicing semiconductor wafers are described. In an example, a method of dicing a wafer having a plurality of integrated circuits thereon involves dicing the wafer into a plurality of singulated dies disposed above a dicing tape. The method also involves forming a material layer over and between the plurality of singulated dies above the dicing tape. The method also includes expanding the dicing tape, wherein a plurality of particles is collected on the material layer during the expanding.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: July 30, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Jungrae Park, Ajay Kumar, Brad Eaton
  • Publication number: 20190088549
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Patent number: 10163713
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 25, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden