Patents by Inventor Brad Eaton

Brad Eaton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9349648
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a top hat laser beam profile laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: May 24, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Prabhat Kumar, Jungrae Park, Brad Eaton, Ajay Kumar
  • Publication number: 20160141210
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to for corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Patent number: 9343366
    Abstract: Approaches for hybrid laser scribe and plasma etch dicing process for a wafer having backside solder bumps are described. For example, a method of dicing a semiconductor wafer having integrated circuits on a front side thereof and corresponding arrays of metal bumps on a backside thereof involves applying a dicing tape to the backside of the semiconductor wafer, the dicing tape covering the arrays of metal bumps. The method also involves, subsequently, forming a mask on the front side of the semiconductor wafer, the mask covering the integrated circuits. The method also involves forming scribe lines on the front side of the semiconductor wafer with a laser scribing process, the scribe lines formed in the mask and between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the scribe lines to singulate the integrated circuits, the mask protecting the integrated circuits during the plasma etching.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 17, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, James S. Papanu, Aparna Iyer, Brad Eaton, Ajay Kumar
  • Publication number: 20160133519
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a plasma etch apparatus includes a plasma etch chamber. The plasma etch chamber includes a plasma source disposed in an upper region of the plasma etch chamber, a cathode assembly disposed below the plasma source, and a support pedestal for supporting a substrate carrier below the plasma source. The plasma etch apparatus also includes a transfer chamber coupled to the plasma etch chamber. The transfer chamber includes a transfer arm for supporting a substantial portion of a dicing tape of the substrate carrier, the transfer arm configured to transfer a sample from the support pedestal following an etch singulation process.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: James M. Holden, Alexander N. Lerner, Ajay Kumar, Brad Eaton, Aparna Iyer
  • Patent number: 9330977
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the plurality of integrated circuits. The mask is then patterned with a galvo scanner and linear stage hybrid motion laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the plurality of integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the plurality of integrated circuits.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: May 3, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Ajay Kumar
  • Patent number: 9312177
    Abstract: Methods of using a screen-print mask for hybrid wafer dicing using laser scribing and plasma etch described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits separated by streets involves screen-printing a patterned mask above the semiconductor wafer, the patterned mask covering the integrated circuits and exposing the streets of the semiconductor wafer. The method also involves laser ablating the streets with a laser scribing process to expose regions of the semiconductor wafer between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the exposed regions of the semiconductor wafer to singulate the integrated circuits. The patterned mask protects the integrated circuits during the plasma etching.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 12, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Prabhat Kumar, Brad Eaton, Wei-Sheng Lei, James S. Papanu, Ajay Kumar
  • Patent number: 9299611
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask is exposed to a plasma treatment process to increase an etch resistance of the mask. The mask is patterned with a laser scribing process to provide gaps in the mask, the gaps exposing regions of the semiconductor wafer between the integrated circuits. Subsequent to exposing the mask to the plasma treatment process, the semiconductor wafer is plasma etched through the gaps in the mask to singulate the integrated circuits.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: March 29, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Ajay Kumar, James S. Papanu, Jungrae Park
  • Patent number: 9299614
    Abstract: Methods of and carriers for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a carrier for supporting a wafer or substrate in an etch process includes a frame having a perimeter surrounding an inner opening. The carrier also includes a tape coupled to the frame and disposed below the inner opening of the frame, the tape comprising an etch stop layer disposed above a support layer.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: March 29, 2016
    Assignee: Applied Materials, Inc.
    Inventors: James M. Holden, Brad Eaton, Aparna Iyer, Ajay Kumar
  • Publication number: 20160086851
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with an adaptive optics-controlled laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 24, 2016
    Inventors: Jungrae Park, Wei-Sheng Lei, James S. Papanu, Brad Eaton, Ajay Kumar
  • Patent number: 9281244
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with an adaptive optics-controlled laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 8, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jungrae Park, Wei-Sheng Lei, James S. Papanu, Brad Eaton, Ajay Kumar
  • Patent number: 9275902
    Abstract: Approaches for front side laser scribe plus backside bump formation and laser scribe and plasma etch dicing process are described. For example, a method of dicing a semiconductor wafer having integrated circuits on a front side thereof involves forming first scribe lines on the front side, between the integrated circuits, with a first laser scribing process. The method also involves forming arrays of metal bumps on a backside of the semiconductor wafer, each array corresponding to one of the integrated circuits. The method also involves forming second scribe lines on the backside, between the arrays of metal bumps, with a second laser scribing process, wherein the second scribe lines are aligned with the first scribe lines. The method also involves plasma etching the semiconductor wafer through the second scribe lines to singulate the integrated circuits.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: March 1, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, James S. Papanu, Aparna Iyer, Brad Eaton, Ajay Kumar
  • Patent number: 9269604
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of reducing edge warping in a supported semiconductor wafer involves adhering a backside of a semiconductor wafer to an inner portion of a carrier tape of a substrate carrier comprising a tape frame mounted above the carrier tape. The method also involves adhering an adhesive tape to a front side of the semiconductor wafer and to at least a portion of the substrate carrier. The adhesive tape includes an opening exposing an inner region of the front side of the semiconductor wafer.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 23, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Ajay Kumar
  • Publication number: 20160049313
    Abstract: Embodiments of the invention include methods and apparatuses for outgassing a workpiece prior to a plasma processing operation. An embodiment of the invention may comprise transferring a workpiece having a mask to an outgassing station that has one or more heating elements. The workpiece may then be heated to an outgassing temperature that causes moisture from the mask layer to be outgassed. After outgassing the workpiece, the workpiece may be transferred to a plasma processing chamber. In an additional embodiment, one or more outgassing stations may be located within a process tool that has a factory interface, a load lock coupled to the factory interface, a transfer chamber coupled to the load lock, and a plasma processing chamber coupled to the transfer chamber. According to an embodiment, an outgassing station may be located within any of the components of the process tool.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 18, 2016
    Inventors: PRABHAT KUMAR, Wei-Sheng Lei, Martin S. Wohlert, James S. Papanu, Brad Eaton, Ajay Kumar
  • Patent number: 9263308
    Abstract: Methods of dicing substrates having a plurality of ICs are disclosed. A method includes forming a mask comprising a water soluble material layer over the semiconductor substrate. The mask is patterned with a femtosecond laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. The substrate is then etched through the gaps in the patterned mask to singulate the IC and the water soluble material layer is washed off.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 16, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Publication number: 20160035577
    Abstract: Methods of dicing substrates having a plurality of ICs. A method includes forming a multi-layered mask comprising a laser energy absorbing, non-photodefinable topcoat disposed over a water-soluble base layer disposed over the semiconductor substrate. Because the laser light absorbing material layer is non-photodefinable, material costs associated with conventional photo resist formulations may be avoided. The mask is direct-write patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. Absorption of the mask layer within the laser emission band (e.g., UV band and/or green band) promotes good scribe line quality. The substrate may then be plasma etched through the gaps in the patterned mask to singulate the IC with the mask protecting the ICs during the plasma etch. The soluble base layer of the mask may then be dissolved subsequent to singulation, facilitating removal of the layer.
    Type: Application
    Filed: March 11, 2014
    Publication date: February 4, 2016
    Inventors: Wei-Sheng LEI, Mohammad Kamruzzaman CHOWDHURY, Todd EGAN, Brad EATON, Madhava Rao YALAMANCHILI, Ajay KUMAR
  • Patent number: 9252057
    Abstract: Methods and systems of laser and plasma etch wafer dicing using UV-curable adhesive films. A method includes forming a mask covering ICs formed on the wafer. The semiconductor wafer is coupled to a film frame by a UV-curable adhesive film. A pre-cure of the UV-curable adhesive film cures a peripheral portion of the adhesive extending beyond an edge of the wafer to improve the exposed adhesive material's resistance to plasma etch and reduce hydrocarbon redeposition within the etch chamber. The mask is patterned by laser scribing to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer, below thin film layers from which the ICs are formed. The semiconductor wafer is plasma etched through the gaps in the patterned mask to singulate the ICs. A center portion of the UV-curable adhesive is then cured and the singulated ICs detached from the film.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: February 2, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Mohammad Kamruzzaman Chowdhury, Wei-Sheng Lei, Todd Egan, Brad Eaton, Madhava Rao Yalamanchili, Ajay Kumar
  • Publication number: 20160027697
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a top hat laser beam profile laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: July 22, 2014
    Publication date: January 28, 2016
    Inventors: Wei-Sheng Lei, Prabhat Kumar, Jungrae Park, Brad Eaton, Ajay Kumar
  • Patent number: 9245802
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: January 26, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Patent number: 9245803
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a Bessel beam shaper laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 26, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jungrae Park, Wei-Sheng Lei, James S. Papanu, Brad Eaton, Ajay Kumar
  • Patent number: 9236305
    Abstract: Laser and plasma etch wafer dicing where a mask is formed covering ICs formed on the wafer, as well as any bumps providing an interface to the ICs. The semiconductor wafer is coupled to a film frame by an adhesive film. The mask is patterned by laser scribing to provide a patterned mask with gaps. The laser scribing exposes regions of the semiconductor wafer, below thin film layers from which the ICs are formed. The semiconductor wafer is plasma etched through the gaps in the patterned mask while the film frame is maintained at an acceptably low temperature with a chamber shield ring configured to sit beyond the wafer edge and cover the frame. The shield ring may be raised and lowered, for example, on lifter pins to facilitate transfer of the wafer on frame.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: January 12, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Jivko Dinev, Aparna Iyer, Brad Eaton, Ajay Kumar