Patents by Inventor Bret K. Street

Bret K. Street has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200212000
    Abstract: A thermocompression bonding (TCB) apparatus can include a wall having a height measured in a first direction and configured to be positioned between a first pressing surface and a second pressing surface of a semiconductor bonding apparatus. The apparatus can include a cavity at least partially surrounded by the wall, the cavity sized to receive a semiconductor substrate and a stack of semiconductor dies positioned between the semiconductor substrate and the first pressing surface, the stack of semiconductor dies and semiconductor substrate having a combined unpressed stack height as measured in the first direction. In some embodiments, the unpressed stack height is greater than the height of the wall, and the wall is configured to be contacted by the first pressing surface to limit movement of the first pressing surface toward the second pressing surface during a semiconductor bonding process.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Wei Zhou, Bret K. Street, Benjamin L. McClain, Mark E. Tuttle
  • Publication number: 20200211999
    Abstract: A thermocompression bonding (TCB) apparatus can include a wall having a height measured in a first direction and configured to be positioned between a first pressing surface and a second pressing surface of a semiconductor bonding apparatus. The apparatus can include a cavity at least partially surrounded by the wall, the cavity sized to receive a semiconductor substrate and a stack of semiconductor dies positioned between the semiconductor substrate and the first pressing surface, the stack of semiconductor dies and semiconductor substrate having a combined unpressed stack height as measured in the first direction. In some embodiments, the unpressed stack height is greater than the height of the wall, and the wall is configured to be contacted by the first pressing surface to limit movement of the first pressing surface toward the second pressing surface during a semiconductor bonding process.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Wei Zhou, Bret K. Street, Benjamin L. McClain, Mark E. Tuttle
  • Publication number: 20200168517
    Abstract: A semiconductor device includes a substrate including a substrate top surface; interconnects connected to the substrate and extending above the substrate top surface; a die attached over the substrate, wherein the die includes a die bottom surface that connects to the interconnects for electrically coupling the die and the substrate; and a metal enclosure directly contacting and vertically extending between the substrate top surface and the die bottom surface, wherein the metal enclosure peripherally surrounds the interconnects.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: Wei Zhou, Bret K. Street, Mark E. Tuttle
  • Patent number: 10615150
    Abstract: A semiconductor device includes a first die; a second die attached over the first die; a first metal enclosure and a second metal enclosure both directly contacting and vertically extending between the first die and the second die, wherein the first metal enclosure peripherally encircles a set of one or more internal interconnects and the second metal enclosure peripherally encircles the first metal enclosure without directly contacting the first metal enclosure; a first enclosure connector electrically connecting the first metal enclosure to a first voltage level; a second enclosure connector electrically connecting the second metal enclosure to a second voltage level; and wherein the first metal enclosure, the second metal enclosure, the first enclosure connector, and the second enclosure connector are configured to provide an enclosure capacitance.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: April 7, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Wei Zhou, Bret K. Street
  • Publication number: 20200083178
    Abstract: A semiconductor device assembly that includes a substrate having a first side and a second side, the first side having at least one dummy pad and at least one electrical pad. The semiconductor device assembly includes a first semiconductor device having a first side and a second side and at least one electrical pillar extending from the second side. The electrical pillar is connected to the electrical pad via solder to form an electrical interconnect. The semiconductor device assembly includes at least one dummy pillar extending from the second side of the first semiconductor device and a liquid positioned between an end of the dummy pillar and the dummy pad. The surface tension of the liquid pulls the dummy pillar towards the dummy pad. The surface tension may reduce or minimize a warpage of the semiconductor device assembly and/or align the dummy pillar and the dummy pad.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Bret K. Street, Wei Zhou, Christopher J. Gambee, Jonathan S. Hacker, Shijian Luo
  • Patent number: 10580720
    Abstract: A silicon interposer that includes an array, or pattern, of conductive paths positioned within a silicon substrate with a plurality of pins on the exterior of the substrate. Each of the pins is connected to a portion of the array of conductive paths. The array of conductive paths is configurable to provide a first electrical flow path through the substrate via a portion of the array of conductive paths or a second electrical flow path through the substrate. The electrical flow path through the substrate may be customizable for testing various die or chip layout designs. The electrical flow path through the substrate may be customizable by laser ablation of portions of the conductive paths, breaking of fuses along the conductive paths, and/or the actuation of logic gates connected to the conductive paths.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: March 3, 2020
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Bret K. Street, Owen R. Fay, Eiichi Nakano
  • Patent number: 10580710
    Abstract: A semiconductor device includes a substrate including a substrate top surface; interconnects connected to the substrate and extending above the substrate top surface; a die attached over the substrate, wherein the die includes a die bottom surface that connects to the interconnects for electrically coupling the die and the substrate; and a metal enclosure directly contacting and vertically extending between the substrate top surface and the die bottom surface, wherein the metal enclosure peripherally surrounds the interconnects.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 3, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Wei Zhou, Bret K. Street, Mark E. Tuttle
  • Publication number: 20200020646
    Abstract: A semiconductor device assembly including a shape-memory element connected to at least one component of the semiconductor device assembly. The shape-memory element may be temperature activated or electrically activated. The shape-memory element is configured to move to reduce, minimize, or modify a warpage of a component of the assembly by moving to an initial shape. The shape-memory element may be applied to a surface of a component of the semiconductor device assembly or may be positioned within a component of the semiconductor device assembly such as a layer. The shape-memory element may be connected between two components of the semiconductor device assembly. A plurality of shape-memory elements may be used to reduce, minimize, and/or modify warpage of one or more components of a semiconductor device assembly.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventor: Bret K. Street
  • Patent number: 10475771
    Abstract: A semiconductor device includes a first die; a first metal enclosure directly contacting and vertically extending below the first die, wherein the first metal enclosure peripherally encircles a first enclosed space; a second die directly contacting the first metal enclosure opposite the first die; a second metal enclosure directly contacting and vertically extending below the second die, wherein the second metal enclosure peripherally encircles a second enclosed space; and an enclosure connection mechanism directly contacting the first metal enclosure and the second metal enclosure for electrically coupling the first metal enclosure and the second metal enclosure.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: November 12, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Wei Zhou, Bret K. Street
  • Publication number: 20190279967
    Abstract: A semiconductor device includes a first die; a first metal enclosure directly contacting and vertically extending below the first die, wherein the first metal enclosure peripherally encircles a first enclosed space; a second die directly contacting the first metal enclosure opposite the first die; a second metal enclosure directly contacting and vertically extending below the second die, wherein the second metal enclosure peripherally encircles a second enclosed space; and an enclosure connection mechanism directly contacting the first metal enclosure and the second metal enclosure for electrically coupling the first metal enclosure and the second metal enclosure.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 12, 2019
    Inventors: Wei Zhou, Bret K. Street
  • Publication number: 20190267352
    Abstract: A semiconductor device includes a first die; a second die attached over the first die; a first metal enclosure and a second metal enclosure both directly contacting and vertically extending between the first die and the second die, wherein the first metal enclosure peripherally encircles a set of one or more internal interconnects and the second metal enclosure peripherally encircles the first metal enclosure without directly contacting the first metal enclosure; a first enclosure connector electrically connecting the first metal enclosure to a first voltage level; a second enclosure connector electrically connecting the second metal enclosure to a second voltage level; and wherein the first metal enclosure, the second metal enclosure, the first enclosure connector, and the second enclosure connector are configured to provide an enclosure capacitance.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 29, 2019
    Inventors: Wei Zhou, Bret K. Street
  • Patent number: 10381329
    Abstract: A semiconductor device includes a first die; a second die attached over the first die; a first metal enclosure and a second metal enclosure both directly contacting and vertically extending between the first die and the second die, wherein the first metal enclosure peripherally encircles a set of one or more internal interconnects and the second metal enclosure peripherally encircles the first metal enclosure without directly contacting the first metal enclosure; a first enclosure connector electrically connecting the first metal enclosure to a first voltage level; a second enclosure connector electrically connecting the second metal enclosure to a second voltage level; and wherein the first metal enclosure, the second metal enclosure, the first enclosure connector, and the second enclosure connector are configured to provide an enclosure capacitance.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: August 13, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Wei Zhou, Bret K. Street
  • Publication number: 20190229090
    Abstract: A semiconductor device includes a first die; a second die attached over the first die; a first metal enclosure and a second metal enclosure both directly contacting and vertically extending between the first die and the second die, wherein the first metal enclosure peripherally encircles a set of one or more internal interconnects and the second metal enclosure peripherally encircles the first metal enclosure without directly contacting the first metal enclosure; a first enclosure connector electrically connecting the first metal enclosure to a first voltage level; a second enclosure connector electrically connecting the second metal enclosure to a second voltage level; and wherein the first metal enclosure, the second metal enclosure, the first enclosure connector, and the second enclosure connector are configured to provide an enclosure capacitance.
    Type: Application
    Filed: January 24, 2018
    Publication date: July 25, 2019
    Inventors: Wei Zhou, Bret K. Street
  • Publication number: 20190229089
    Abstract: A semiconductor device includes a first die; a first metal enclosure directly contacting and vertically extending below the first die, wherein the first metal enclosure peripherally encircles a first enclosed space; a second die directly contacting the first metal enclosure opposite the first die; a second metal enclosure directly contacting and vertically extending below the second die, wherein the second metal enclosure peripherally encircles a second enclosed space; and an enclosure connection mechanism directly contacting the first metal enclosure and the second metal enclosure for electrically coupling the first metal enclosure and the second metal enclosure.
    Type: Application
    Filed: January 24, 2018
    Publication date: July 25, 2019
    Inventors: Wei Zhou, Bret K. Street
  • Publication number: 20190067137
    Abstract: A semiconductor device includes a substrate including a substrate top surface; interconnects connected to the substrate and extending above the substrate top surface; a die attached over the substrate, wherein the die includes a die bottom surface that connects to the interconnects for electrically coupling the die and the substrate; and a metal enclosure directly contacting and vertically extending between the substrate top surface and the die bottom surface, wherein the metal enclosure peripherally surrounds the interconnects.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Wei Zhou, Bret K. Street, Mark E. Tuttle
  • Patent number: 10103134
    Abstract: Methods of making semiconductor device packages may involve attaching a first semiconductor die to a carrier wafer, an inactive surface of the first semiconductor die facing the carrier wafer. One or more additional semiconductor die may be stacked on the first semiconductor die on a side of the first semiconductor die opposite the carrier wafer to form a stack of semiconductor dice. A protective material may be positioned over the stack of semiconductor dice, a portion of the protective material extending along side surfaces of the first semiconductor die to a location proximate the inactive surface of the first semiconductor die. The carrier wafer may be detached from the first semiconductor die.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: October 16, 2018
    Inventors: Wei Zhou, Aibin Yu, Zhaohui Ma, Sony Varghese, Jonathan S. Hacker, Bret K. Street, Shijian Luo
  • Patent number: 10043688
    Abstract: An apparatus, system, and a method of using the apparatus or system that includes a bladder positioned between tape and an adhesive layer configured to selectively connect the tape to a semiconductor device. The bladder includes one or more chambers that may be selectively expanded to move a portion of the bladder and adhesive layer away from the tape, which may enable the removal of the semiconductor device. The flow of fluid into each of the chambers may selectively expand the chambers. The chambers may have a substantially rounded upper profile or a substantially pointed upper profile. A material within the chambers may be heated to expand the chambers. A plurality of conduits may permit the flow of fluid into the chambers. The conduits may be inserted into the bladder. The chambers may be collapsed after expansion to enable the removal of a semiconductor device from the tape.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 7, 2018
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Jeremy E. Minnich, Brandon P. Wirz, Bret K. Street, James M. Derderian
  • Publication number: 20180033781
    Abstract: Methods of making semiconductor device packages may involve attaching a first semiconductor die to a carrier wafer, an inactive surface of the first semiconductor die facing the carrier wafer. One or more additional semiconductor die may be stacked on the first semiconductor die on a side of the first semiconductor die opposite the carrier wafer to form a stack of semiconductor dice. A protective material may be positioned over the stack of semiconductor dice, a portion of the protective material extending along side surfaces of the first semiconductor die to a location proximate the inactive surface of the first semiconductor die. The carrier wafer may be detached from the first semiconductor die.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 1, 2018
    Inventors: Wei Zhou, Aibin Yu, Zhaohui Ma, Sony Varghese, Jonathan S. Hacker, Bret K. Street, Shijian Luo
  • Patent number: 9865578
    Abstract: Methods of making semiconductor device packages may involve attaching a first semiconductor die to a carrier wafer, an inactive surface of the first semiconductor die facing the carrier wafer. One or more additional semiconductor die may be stacked on the first semiconductor die on a side of the first semiconductor die opposite the carrier wafer to form a stack of semiconductor dice. A protective material may be positioned over the stack of semiconductor dice, a portion of the protective material extending along side surfaces of the first semiconductor die to a location proximate the inactive surface of the first semiconductor die. The carrier wafer may be detached from the first semiconductor die.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: January 9, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Wei Zhou, Aibin Yu, Zhaohui Ma, Sony Varghese, Jonathan S. Hacker, Bret K. Street, Shijian Luo
  • Patent number: 9786612
    Abstract: Wafer-level methods of processing semiconductor devices may involve forming grooves partially through a molding material, the molding material located in streets and at least surrounding stacks of semiconductor dice located on a wafer. Wafer-level methods of preparing semiconductor devices may involve attaching a wafer to a carrier substrate and forming stacks of laterally spaced semiconductor dice on die locations of the wafer. Molding material may be disposed over the die stacks on a surface of the wafer to at least surround the stacks of semiconductor dice with the molding material. Grooves may be formed in the molding material by partially cutting through the molding material between at least some of the stacks of semiconductor dice along streets between the die stacks. The resulting wafer-level assembly may then, when exposed to elevated temperatures during, for example, debonding the wafer from a carrier, exhibit reduced propensity for warping.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: October 10, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Aibin Yu, Wei Zhou, Zhaohui Ma, Bret K. Street