Patents by Inventor Brian Hargreaves

Brian Hargreaves has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190355157
    Abstract: Multi-shot diffusion-weighted magnetic resonance imaging acquires multiple k-space segments of diffusion-weighted MRI data, estimates reconstructed multi-shot diffusion weighted images, and combines the estimated images to obtain a final reconstructed MRI image. The estimation of images iteratively calculates updated multi-shot images from the multiple k-space segments and current multi-shot images using a convex model without estimating motion-induced phase, constructs multiple locally low-rank spatial-shot matrices from the updated multi-shot images, and calculates current multi-shot images from spatial-shot matrices.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 21, 2019
    Inventors: Bruce L. Daniel, Brian A. Hargreaves, Yuxin Hu, Evan G. Levine
  • Patent number: 10369385
    Abstract: A method for providing at least one measurement by a magnetic resonance imaging (MRI) system of a tissue property or underlying tissue property in a region sufficiently close to a metal object, so that the metal object induces artifacts is provided. At least one magnetic resonance imaging signal from the region is acquired through the MRI system. The acquired at least one MRI signal is processed to correct for artifacts induced by the metal object. At least one tissue property or underlying tissue property measurement is extracted from the processed at least one MRI signal.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hans Weber, Daehyun Yoon, Valentina Taviani, Brian A. Hargreaves
  • Patent number: 10139459
    Abstract: A method using 2D multi-spectral imaging (2DMSI) for MRI imaging of a metallic object (such as a biopsy needle) and region surrounding the metallic object within an imaging field of view of an MRI apparatus includes segmenting the imaging field-of-view into spatial-spectral bins, where the segmenting is based on off-resonance frequency induced by the metallic object and slice location; selectively exciting each frequency bin of the spatial-spectral bins by inverting a slice selection gradient between excitation and refocusing pulses; performing repeated acquisition with different radiofrequency modulations to produce acquired images of adjacent bins; composing a 2DMSI image by root-sum-of-squares combination of the acquired images of adjacent bins; and highlighting in the 2DMSI image an area of furthest off-resonance bins based on 2DMSI off-resonance information by thresholding image intensity in frequency bins, thereby indicating a contour of the metallic object.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: November 27, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hans Weber, Brian A. Hargreaves
  • Patent number: 10114099
    Abstract: A method for magnetic resonance imaging is provided that includes using a magnetic resonance imaging system to excite a field of view (FOV) for a target being imaged, using an excitation plan to limit the excited FOV to a relatively narrow band of magnetization, exciting multiple bands of magnetization simultaneously, applying phase encoding along a shortest FOV dimension, acquiring a signal from said simultaneously excited bands of magnetization, and reconstructing and outputting a target image from the acquired signal.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 30, 2018
    Assignees: The Board of Trustees of the Leland Stanford Junior University, General Electric Company
    Inventors: Valentina Taviani, Brian A. Hargreaves, Bruce L Daniel, Shreyas S Vasanawala, Suchandrima Banerjee
  • Patent number: 10101424
    Abstract: Accelerated 3D multispectral imaging (MSI) on a magnetic resonance imaging (MRI) system uses phase-encoding in two dimensions and frequency-encoding in the third.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 16, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Evan G. Levine, Brian A. Hargreaves
  • Publication number: 20180284201
    Abstract: A method using 2D multi-spectral imaging (2DMSI) for MRI imaging of a metallic object (such as a biopsy needle) and region surrounding the metallic object within an imaging field of view of an MRI apparatus includes segmenting the imaging field-of-view into spatial-spectral bins, where the segmenting is based on off-resonance frequency induced by the metallic object and slice location; selectively exciting each frequency bin of the spatial-spectral bins by inverting a slice selection gradient between excitation and refocusing pulses; performing repeated acquisition with different radiofrequency modulations to produce acquired images of adjacent bins; composing a 2DMSI image by root-sum-of-squares combination of the acquired images of adjacent bins; and highlighting in the 2DMSI image an area of furthest off-resonance bins based on 2DMSI off-resonance information by thresholding image intensity in frequency bins, thereby indicating a contour of the metallic object.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 4, 2018
    Inventors: Hans Weber, Brian A. Hargreaves
  • Publication number: 20180267126
    Abstract: A method for magnetic resonance imaging suppresses off-resonance gradient-induced image artifacts due to metal. The method includes performing by a magnetic resonance imaging (MRI) apparatus two multi-spectral imaging (MSI) acquisitions within a field of view of the MRI apparatus, where the two MSI acquisitions have alternating-sign readout gradients. The two MSI acquisitions are then processed and combined by the MRI apparatus using a weighted image combination to produce a final image.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 20, 2018
    Inventors: Xinwei Shi, Brian A. Hargreaves
  • Publication number: 20180172788
    Abstract: Accelerated 3D multispectral imaging (MSI) on a magnetic resonance imaging (MRI) system uses phase-encoding in two dimensions and frequency-encoding in the third.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Evan G. Levine, Brian A. Hargreaves
  • Publication number: 20180143277
    Abstract: A method for performing wave-encoded magnetic resonance imaging of an object is provided. The method includes applying one or more wave-encoded magnetic gradients to the object, and acquiring MR signals from the object. The method further includes calibrating a wave point-spread function, and reconstructing an image from the MR signals based at least in part on the calibrated wave point-spread function. Calibration of the wave point-spread function is based at least in part on one or more intermediate images generated from the MR signals.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 24, 2018
    Applicants: GENERAL ELECTRIC COMPANY, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: FEIYU CHEN, TAO ZHANG, JOSEPH Y. CHENG, VALENTINA TAVIANI, BRIAN HARGREAVES, JOHN PAULY, SHREYAS VASANAWALA
  • Publication number: 20180116732
    Abstract: A method of real-time 3D flexible needle tracking for image-guided surgery is provided that includes uploading, using a controller, a virtual model of a flexible needle to a calibrated 3D mixed reality headset, where the virtual model, establishing an initial position of a base of a flexible needle relative to a target under test, using the controller and the flexible needle, where the flexible needle includes sensors spanning from the base to along a length of the flexible needle, where the sensors communicate a position, a shape, and an orientation of the flexible needle to the controller, where the controller communicates the sensor positions to the calibrated 3D mixed-reality headset, and using the calibrated 3D mixed-reality headset to display in real-time a position and shape of the flexible needle relative to the target under test.
    Type: Application
    Filed: October 18, 2017
    Publication date: May 3, 2018
    Inventors: Michael A. Lin, Jung Hwa Bae, Subashini Srinivasan, Mark R. Cutkosky, Brian A. Hargreaves, Bruce L. Daniel
  • Publication number: 20170299679
    Abstract: A method for providing an estimated 3D T2 map for magnetic resonance imaging using a Double-Echo Steady-State (DESS) sequence for a volume of an object in a magnetic resonance imaging (MRI) system is provided. A DESS scan of the volume is provided by the MRI system. Signals S1 and S2 are acquired by the MRI system. Signals S1 and S2 are used to provide a T2 map for a plurality of slices of the volume, comprising determining repetition time (TR), echo time (TE), flip angle ?, and an estimate of the longitudinal relaxation time (T1), and wherein the DESS scan has a spoiler gradient with an amplitude G and a duration ? and ignoring echo pathways having spent more than two repetition times in the transverse plane.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 19, 2017
    Inventors: Brian A. HARGREAVES, Bragi SVEINSSON
  • Publication number: 20170299682
    Abstract: A method for generating a magnetic resonance image of an object in a magnetic resonance imaging (MRI) system, wherein the object contains at least one metallic implant is provided. The MRI system provides multiple excitations of at least part of the object. The MRI system reads out image signals from the object. The MRI system saves the readout image signals as image data. A field-map is generated from the image data using a goodness-of-fit process which uses a goodness-of-fit metric, matched-filter, and/or similar fitting techniques to fit expected signals from each excitation to the image data.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 19, 2017
    Inventors: Brady J. QUIST, Brian A. HARGREAVES
  • Publication number: 20170285125
    Abstract: Improved motion correction for magnetic resonance imaging is provided. An MR imaging method provides a first sequence of MR images and a second sequence of MR images where: 1) the two sequences are inherently spatially co-registered and synchronous with each other; 2) the first sequence includes signal variation due to one or more causes other than motion or deformation; and 3) the second sequence does not include the signal variation of the first sequence. In this situation, the second sequence can be used to perform motion correction for the first sequence. One example of this approach is Dixon MR imaging, where the water images are the first sequence and the fat images are the second sequence.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 5, 2017
    Inventors: Bruce L. Daniel, Brian A. Hargreaves, Subashini Srinivasan
  • Publication number: 20160306021
    Abstract: A method for providing at least one measurement by a magnetic resonance imaging (MRI) system of a tissue property or underlying tissue property in a region sufficiently close to a metal object, so that the metal object induces artifacts is provided. At least one magnetic resonance imaging signal from the region is acquired through the MRI system. The acquired at least one MRI signal is processed to correct for artifacts induced by the metal object. At least one tissue property or underlying tissue property measurement is extracted from the processed at least one MRI signal.
    Type: Application
    Filed: April 14, 2015
    Publication date: October 20, 2016
    Inventors: Hans WEBER, Daehyun YOON, Valentina TAVIANI, Brian A. HARGREAVES
  • Publication number: 20160231409
    Abstract: A method for magnetic resonance imaging is provided that includes using a magnetic resonance imaging system to excite a field of view (FOV) for a target being imaged, using an excitation plan to limit the excited FOV to a relatively narrow band of magnetization, exciting multiple bands of magnetization simultaneously, applying phase encoding along a shortest FOV dimension, acquiring a signal from said simultaneously excited bands of magnetization, and reconstructing and outputting a target image from the acquired signal.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Valentina Taviani, Brian A. Hargreaves, Bruce L. Daniel, Shreyas S. Vasanawala, Suchandrima Banerjee
  • Patent number: 9389294
    Abstract: A method for 3D magnetic resonance imaging (MRI) with slice-direction distortion correction is provided. One or more selective cross-sections with a thickness along a first axis are excited using a RF pulse with a bandwidth, wherein a selective cross-section is either a selective slice or selective slab. A refocusing pulse is applied to form a spin echo. One or more 2D encoded image signals are acquired with readout along a second axis and phase encoding along a third axis, wherein the data long the phase encoded first and third axes is acquired with an under sampling scheme. Slice-direction distortion is corrected by resolving the position by using phase encoding.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 12, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Bragi Sveinsson, Brian A. Hargreaves
  • Publication number: 20140266191
    Abstract: A method for 3D magnetic resonance imaging (MRI) with slice-direction distortion correction is provided. One or more selective cross-sections with a thickness along a first axis are excited using a RF pulse with a bandwidth, wherein a selective cross-section is either a selective slice or selective slab. A refocusing pulse is applied to form a spin echo. One or more 2D encoded image signals are acquired with readout along a second axis and phase encoding along a third axis, wherein the data long the phase encoded first and third axes is acquired with an under sampling scheme. Slice-direction distortion is corrected by resolving the position by using phase encoding.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Bragi SVEINSSON, Brian A. HARGREAVES
  • Patent number: 8803523
    Abstract: A method of ordering slices for interleaved MRI is provided that includes selecting a number of interleaved slice locations (NS) each having a plurality of excitations (NE,S), where S is the slice number between 1 and NS and NE,S may differ for different slice numbers, selecting an excitation duration (TS) of each the excitation in each the slice, selecting a repetition time (TR) between successive excitations of the same slice, TR has a duration of Ni×TS, Ni is the number of interleaved slices per TR period, and arranging the order for the slices such that the total scan time (T) is minimized such that TR is the product of Ni and Ts, where Ni can be arbitrarily chosen between 1 and NT/NE,max where NT is the total number of excitations for all the slices and where NE,max is the maximum number of the excitations for one slice.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: August 12, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Brian A. Hargreaves
  • Patent number: 8706188
    Abstract: A method for musculoskeletal tissue segmentation used in magnetic resonance imaging (MRI) is provided. MRI image data is collected using at least two different contrast mechanisms. Voxel values from data from each contrast mechanism are used as elements of a feature vector. The feature vector is compared with classification boundaries to classify musculoskeletal tissue type of the voxel. The previous two steps are repeated for a plurality of voxels. An image is generated from the classified musculoskeletal tissue types for the plurality of voxels to provide a musculoskeletal segmentation image.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: April 22, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Seungbum Koo, Brian A. Hargreaves, Garry E. Gold
  • Patent number: 8587311
    Abstract: A system and method for breast imaging is disclosed. The system is constructed as a modular RF coil system for an MR imaging apparatus and includes a fitted coil former constructed to have a shape and size so as to substantially conform to a breast of a patient to be imaged and a receiver coil array positioned on the fitted coil former and having a plurality of receiver coils arranged to form a coil array. At least one of a size of each of the plurality of receiver coils and a number of the plurality of receiver coils is based on a size of the fitted coil former. Based on its coil arrangement and its proximity to the breasts of the patient to be imaged, the receiver coil array of the modular RF coil system is capable of receiving MR data for parallel imaging.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: November 19, 2013
    Assignees: General Electric Company, The Board of Trustees of the Leland Stanford, Jr. University
    Inventors: Anderson Nnewihe, Brian Hargreaves, Bruce L. Daniel, Thomas Grafendorfer, Paul David Calderon, Fraser John Laing Robb