Patents by Inventor Brian J. Greene

Brian J. Greene has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9105722
    Abstract: In one embodiment, a semiconductor device is provided that includes a semiconductor substrate including an active region and at least one trench isolation region at a perimeter of the active region, and a functional gate structure present on a portion of the active region of the semiconductor substrate. Embedded semiconductor regions are present in the active region of the semiconductor substrate on opposing sides of the portion of the active region that the functional gate structure is present on. A portion of the active region of the semiconductor substrate separates the outermost edge of the embedded semiconductor regions from the at least one isolation region. Methods of forming the aforementioned device are also provided.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Yue Liang, Xiaojun Yu
  • Patent number: 9093275
    Abstract: A dielectric material layer is formed on a semiconductor-on-insulator (SOI) substrate including a top semiconductor layer containing a first semiconductor material. An opening is formed within the dielectric material layer, and a trench is formed in the top semiconductor layer within the area of the opening by an etch. A second semiconductor material is deposited to a height above the top surface of the top semiconductor layer employing a selective epitaxy process. Another dielectric material layer can be deposited, and another trench can be formed in the top semiconductor layer. Another semiconductor material can be deposited to a different height employing another selective epitaxy process. The various semiconductor material portions can be patterned to form semiconductor fins having different heights and/or different compositions.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Augustin J. Hong, Byeong Y. Kim, Dan M. Mocuta
  • Patent number: 9082877
    Abstract: A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Yue Liang, Dureseti Chidambarrao, Brian J. Greene, William K. Henson, Unoh Kwon, Shreesh Narasimha, Xiaojun Yu
  • Publication number: 20150108616
    Abstract: A dielectric material layer is formed on a semiconductor-on-insulator (SOI) substrate including a top semiconductor layer containing a first semiconductor material. An opening is formed within the dielectric material layer, and a trench is formed in the top semiconductor layer within the area of the opening by an etch. A second semiconductor material is deposited to a height above the top surface of the top semiconductor layer employing a selective epitaxy process. Another dielectric material layer can be deposited, and another trench can be formed in the top semiconductor layer. Another semiconductor material can be deposited to a different height employing another selective epitaxy process. The various semiconductor material portions can be patterned to form semiconductor fins having different heights and/or different compositions.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: International Business Machines Corporation
    Inventors: Brian J. Greene, Augustin J. Hong, Byeong Y. Kim, Dan M. Mocuta
  • Patent number: 8993389
    Abstract: A method of forming a semiconductor device comprising a dummy gate interconnect includes forming a dummy gate on a substrate, the dummy gate comprising a dummy gate metal layer located on the substrate, and a dummy gate polysilicon layer located on the dummy gate metal layer; forming an active gate on the substrate, the active gate comprising an active gate metal layer located on the substrate, and an active gate polysilicon layer located on the active gate metal layer; and etching the dummy gate polysilicon layer to remove at least a portion of the dummy gate polysilicon layer to form the dummy gate interconnect, wherein the active gate polysilicon layer is not etched during the etching of the dummy gate polysilicon layer.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Yue Liang, Xiaojun Yu
  • Publication number: 20150054093
    Abstract: FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
    Type: Application
    Filed: November 10, 2014
    Publication date: February 26, 2015
    Inventors: Eduard A. CARTIER, Brian J. GREENE, Dechao GUO, Gan WANG, Yanfeng WANG, Keith Kwong Hon WONG
  • Patent number: 8941189
    Abstract: Various embodiments include fin-shaped field effect transistor (finFET) structures that enhance work function and threshold voltage (Vt) control, along with methods of forming such structures. The finFET structures can include a p-type field effect transistor (PFET) and an n-type field effect transistor (NFET). In some embodiments, the PFET has fins separated by a first distance and the NFET has fins separated by a second distance, where the first distance and the second distance are distinct from one another. In some embodiments, the PFET or the NFET include fins that are separated from one another by non-uniform distances. In some embodiments, the PFET or the NFET include adjacent fins that are separated by distinct distances at their source and drain regions.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Murshed M. Chowdhury, Benjamin R. Cipriany, Brian J. Greene, Arvind Kumar
  • Patent number: 8932949
    Abstract: FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Eduard A. Cartier, Brian J. Greene, Dechao Guo, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong
  • Patent number: 8927427
    Abstract: A method including introducing a dopant into a region of a substrate, etching a deep trench in the substrate through the region, gettering impurities introduced during etching of the deep trench using a pentavalent ion formed from a reaction between an element of the substrate and the dopant, wherein the charge of the pentavalent ion attracts the impurities, and filling the deep trench with a conductive material.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Troy L. Graves-Abe, Brian J. Greene, Chandrasekharan Kothandaraman
  • Publication number: 20150001585
    Abstract: In one embodiment, a semiconductor device is provided that includes a semiconductor substrate including an active region and at least one trench isolation region at a perimeter of the active region, and a functional gate structure present on a portion of the active region of the semiconductor substrate. Embedded semiconductor regions are present in the active region of the semiconductor substrate on opposing sides of the portion of the active region that the functional gate structure is present on. A portion of the active region of the semiconductor substrate separates the outermost edge of the embedded semiconductor regions from the at least one isolation region. Methods of forming the aforementioned device are also provided.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Brian J. Greene, Yue Liang, Xiaojun Yu
  • Publication number: 20140349451
    Abstract: A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
    Type: Application
    Filed: May 30, 2014
    Publication date: November 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: Yue Liang, Dureseti Chidambarrao, Brian J. Greene, William K. Henson, Unoh Kwon, Shreesh Narasimha, Xiaojun Yu
  • Publication number: 20140319694
    Abstract: A method including implanting a region of a substrate with a dopant, and forming a through-substrate via in the substrate adjacent to a device, the through-substrate via passing through the region.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Troy L. Graves-Abe, Brian J. Greene, Chandrasekharan Kothandaraman
  • Patent number: 8853035
    Abstract: In one embodiment, a semiconductor device is provided that includes a semiconductor substrate including an active region and at least one trench isolation region at a perimeter of the active region, and a functional gate structure present on a portion of the active region of the semiconductor substrate. Embedded semiconductor regions are present in the active region of the semiconductor substrate on opposing sides of the portion of the active region that the functional gate structure is present on. A portion of the active region of the semiconductor substrate separates the outermost edge of the embedded semiconductor regions from the at least one isolation region. Methods of forming the aforementioned device are also provided.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Xiaojun Yu, Brian J. Greene, Yue Liang
  • Patent number: 8835234
    Abstract: A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Brian J. Greene, Yue Liang, Xiaojun Yu
  • Patent number: 8803243
    Abstract: A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Yue Liang, Dureseti Chidambarrao, Brian J. Greene, William K. Henson, Unoh Kwon, Shreesh Narasimha, Xiaojun Yu
  • Publication number: 20140217504
    Abstract: FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 7, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eduard A. CARTIER, Brian J. GREENE, Dechao GUO, Gan WANG, Yanfeng WANG, Keith Kwong Hon WONG
  • Patent number: 8796771
    Abstract: A method of forming a transistor device includes implanting a diffusion inhibiting species in a semiconductor-on-insulator substrate comprising a bulk substrate, a buried insulator layer, and a semiconductor-on-insulator layer, the semiconductor-on-insulator substrate having one or more gate structures formed thereon such that the diffusion inhibiting species is disposed in portions of the semiconductor-on-insulator layer corresponding to a channel region, and disposed in portions of the buried insulator layer corresponding to source and drain regions. A transistor dopant species is introduced in the source and drain regions. An anneal is performed so as to diffuse the transistor dopant species in a substantially vertical direction while substantially preventing lateral diffusion of the transistor dopant species into the channel region.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Jeffrey B. Johnson, Qingqing Liang, Edward P. Maciejewski
  • Patent number: 8785291
    Abstract: Doped wells, gate stacks, and embedded source and drain regions are formed on, or in, a semiconductor substrate, followed by formation of shallow trenches in the semiconductor substrate. The shallow trenches can be formed by forming a planarized material layer over the doped wells, the gate stacks, and the embedded source and drain regions; patterning the planarized material layer; and transferring the pattern in the planarized material layer into the gate stacks, embedded source and drain regions, and the doped wells. The shallow trenches are filled with a dielectric material to form shallow trench isolation structures. Alternately, the shallow trenches can be formed by applying a photoresist over the doped wells, the gate stacks, and the embedded source and drain regions, and subsequently etching exposed portions of the underlying structures. After removal of the photoresist, shallow trench isolation structures can be formed by filling the shallow trenches.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Xiaojun Yu, Brian J. Greene, Yue Liang
  • Patent number: 8779469
    Abstract: Doped wells, gate stacks, and embedded source and drain regions are formed on, or in, a semiconductor substrate, followed by formation of shallow trenches in the semiconductor substrate. The shallow trenches can be formed by forming a planarized material layer over the doped wells, the gate stacks, and the embedded source and drain regions; patterning the planarized material layer; and transferring the pattern in the planarized material layer into the gate stacks, embedded source and drain regions, and the doped wells. The shallow trenches are filled with a dielectric material to form shallow trench isolation structures. Alternately, the shallow trenches can be formed by applying a photoresist over the doped wells, the gate stacks, and the embedded source and drain regions, and subsequently etching exposed portions of the underlying structures. After removal of the photoresist, shallow trench isolation structures can be formed by filling the shallow trenches.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Yue Liang, Xiaojun Yu
  • Publication number: 20140191295
    Abstract: A method of forming a semiconductor device comprising a dummy gate interconnect includes forming a dummy gate on a substrate, the dummy gate comprising a dummy gate metal layer located on the substrate, and a dummy gate polysilicon layer located on the dummy gate metal layer; forming an active gate on the substrate, the active gate comprising an active gate metal layer located on the substrate, and an active gate polysilicon layer located on the active gate metal layer; and etching the dummy gate polysilicon layer to remove at least a portion of the dummy gate polysilicon layer to form the dummy gate interconnect, wherein the active gate polysilicon layer is not etched during the etching of the dummy gate polysilicon layer.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, Yue Liang, Xiaojun Yu