Patents by Inventor Chang-Ming Wu

Chang-Ming Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9978603
    Abstract: A method comprises forming a control gate structure over a substrate, depositing a memory gate layer over the substrate, applying a first etching process to the memory gate layer to form a memory gate structure, wherein, after applying the first etching process, a remaining portion of the memory gate layer is an L-shaped structure, forming a first spacer along a sidewall of the memory gate structure and forming a second spacer over the memory gate structure.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: May 22, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20180134542
    Abstract: The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: Lee-Chuan Tseng, Chang-Ming Wu, Shih-Chang Liu, Yuan-Chih Hsieh
  • Patent number: 9935119
    Abstract: The present disclosure relates to a flash memory cell. In some embodiments, the flash memory cell has a control gate arranged over a substrate, and a select gate separated from the substrate by a gate dielectric layer. A charge trapping layer has a first portion disposed between the select gate and the control gate, and a second portion arranged under the control gate. A first control gate spacer is arranged on the second portion of the charge trapping layer. A second control gate spacer is arranged on the second portion of the charge trapping layer and is separated from the control gate by the first control gate spacer.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: April 3, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Tai Tseng, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9917165
    Abstract: A split-gate flash memory cell for improved erase speed is provided. An erase gate and a floating gate are laterally spaced over a semiconductor substrate. The floating gate has a height increasing towards the erase gate, a concave sidewall surface neighboring the erase gate, and a tip defined an interface of the concave sidewall surface and an upper surface of the floating gate. A control gate and a sidewall spacer are arranged over the upper surface of the floating gate. The control gate is laterally offset from the tip of the floating gate, and the sidewall spacer is laterally arranged between the control gate and the tip. A method for manufacturing the split-gate flash memory cell is also provided.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: March 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9878899
    Abstract: The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: January 30, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lee-Chuan Tseng, Chang-Ming Wu, Shih-Chang Liu, Yuan-Chih Hsieh
  • Patent number: 9865610
    Abstract: The present disclosure relates to an integrated circuit (IC). The IC includes a substrate, which includes a periphery region having a first substrate surface and a memory cell region having a second substrate surface. The second substrate surface is recessed within the substrate relative to the first substrate surface. A high k metal gate (HKMG) transistor is disposed on the first substrate surface and includes a HKMG gate. Two neighboring flash memory cells are disposed on the second substrate surface and include a pair of flash memory cell control gates. Top surfaces of the HKMG gate and flash memory cell control gates are co-planar.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: January 9, 2018
    Assignee: Taiwan Semicondutor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Wei Cheng Wu, Chin-Yi Huang, Shih-Chang Liu, Chang-Ming Wu
  • Publication number: 20170317095
    Abstract: Some embodiments of the present disclosure relate to method of forming a memory device. In some embodiments, the method may be performed by forming a floating gate over a first dielectric on a substrate. A control gate is formed over the floating gate and first and second spacers are formed along sidewalls of the control gate. The first and second spacers extend past outer edges of an upper surface of the floating gate. An etching process is performed on the first and second spacers to remove a portion of the first and second spacers that extends past the outer edges of the upper surface of the floating gate along an interface between the first and second spacers and the floating gate.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 2, 2017
    Inventors: Chang-Ming Wu, Shih-Chang Liu, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 9799665
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a mask layer over a substrate. The method includes forming a first isolation structure and a second isolation structure passing through the mask layer and penetrating into the substrate. The method includes thinning the mask layer to expose a first portion of the first isolation structure and a second portion of the second isolation structure. The method includes partially removing the first portion, the second portion, the third portion, and the fourth portion. The method includes removing the thinned mask layer. The method includes forming a first gate over the substrate and between the first isolation structure and the second isolation structure. The method includes forming a dielectric layer over the first gate. The method includes forming a second gate over the dielectric layer and above the first gate.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: October 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Tsung-Hsueh Yang, Chung-Chiang Min, Shih-Chang Liu
  • Patent number: 9786674
    Abstract: Provided is a method of forming a decoupling capacitor device and the device thereof. The decoupling capacitor device includes a first dielectric layer portion that is deposited in a deposition process that also deposits a second dielectric layer portion for a non-volatile memory cell. Both portions are patterned using a single mask. A system-on-chip (SOC) device is also provided, the SOC include an RRAM cell and a decoupling capacitor situated in a single inter-metal dielectric layer. Also a method for forming a process-compatible decoupling capacitor is provided. The method includes patterning a top electrode layer, an insulating layer, and a bottom electrode layer to form a non-volatile memory element and a decoupling capacitor.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: October 10, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Chiang Min, Chang-Ming Wu, Shih-Chang Liu, Yuan-Tai Tseng
  • Publication number: 20170287915
    Abstract: A method of manufacturing a semiconductor device includes forming a source/drain region in a substrate. An interlevel dielectric layer is formed on the substrate. A conducting plug is formed in the interlevel dielectric layer. The conducting plug is electrically coupled to the source/drain region. A crown oxide is formed on the interlevel dielectric layer. A deep trench is formed in the crown oxide to expose a top wall and a sidewall of the conducting plug. A spacer is formed on the sidewall of the conducting plug. A metal-insulator-metal film is formed in the deep trench.
    Type: Application
    Filed: June 14, 2017
    Publication date: October 5, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Hsueh YANG, Chung-Chiang MIN, Chang-Ming WU, Shih-Chang LIU
  • Publication number: 20170271465
    Abstract: An exemplary method includes forming a common source region in a substrate, and forming an isolation feature over the common source region. The common source region is disposed between the substrate and the isolation feature. The common source region and the isolation feature span a plurality of active regions of the substrate. A gate, such as an erase gate, may be formed after forming the common source region. In some implementations, the common source region is formed by etching the substrate to form a saw-tooth shaped recess region (or a U-shaped recess region) and performing an ion implantation process to form a doped region in a portion of the saw-tooth shaped recess region (or the U-shaped recess region), such that the common source region has a sawtooth profile (or a U-shaped profile).
    Type: Application
    Filed: June 8, 2017
    Publication date: September 21, 2017
    Inventors: Ming Chyi Liu, Chang-Ming Wu, Shih-Chang Liu, Wei Cheng Wu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai, Ru-Liang Lee
  • Publication number: 20170263616
    Abstract: A nonvolatile memory embedded in an advanced logic circuit and a method forming the same are provided. In the nonvolatile memory, the word lines and erase gates have top surfaces lower than the top surfaces of the control gate. In addition, the word lines and the erase gates are surrounded by dielectric material before a self-aligned silicidation process is performed. Therefore, no metal silicide can be formed on the word lines and the erase gate to produce problems of short circuit and current leakage in a later chemical mechanical polishing process.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 14, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Ming WU, Wei-Cheng WU, Yuan-Tai TSENG, Shih-Chang LIU, Chia-Shiung TSAI, Ru-Liang LEE, Harry Hak-Lay CHUANG
  • Publication number: 20170256553
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a mask layer over a substrate. The method includes forming a first isolation structure and a second isolation structure passing through the mask layer and penetrating into the substrate. The method includes thinning the mask layer to expose a first portion of the first isolation structure and a second portion of the second isolation structure. The method includes partially removing the first portion, the second portion, the third portion, and the fourth portion. The method includes removing the thinned mask layer. The method includes forming a first gate over the substrate and between the first isolation structure and the second isolation structure. The method includes forming a dielectric layer over the first gate. The method includes forming a second gate over the dielectric layer and above the first gate.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 7, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Ming WU, Tsung-Hsueh YANG, Chung-Chiang MIN, Shih-Chang LIU
  • Patent number: 9748255
    Abstract: Some embodiments of the present disclosure relate to a memory device, which includes a floating gate formed over a channel region of a substrate, and a control gate formed over the floating gate. First and second spacers are formed along sidewalls of the control gate, and extend over outer edges of the floating gate to form a non-uniform overhang, which can induce a wide distribution of erase speeds of the memory device. To improve the erase speed distribution, an etching process is performed on the first and second spacers prior to erase gate formation. The etching process removes the overhang of the first and second spacers at an interface between a bottom region of the first and second spacers and a top region of the floating gate to form a planar surface at the interface, and improves the erase speed distribution of the memory device.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: August 29, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 9741868
    Abstract: The present disclosure relates to a self-aligned split gate memory cell, and an associated method. The self-aligned split gate memory cell has a memory gate with a flat top surface. A memory gate spacer is arranged directly above the memory gate having a lateral dimension smaller than that of the memory gate. The memory gate spacer has an inner sidewall disposed along an upper portion of a charge trapping layer and an outer sidewall recessed back laterally relative to an outer sidewall of the memory gate. In some embodiments, a dielectric liner is continuously lined the outer sidewall of the memory gate, extending on a portion of the top surface of the memory gate not covered by the memory gate spacer, and extending upwardly along the outer sidewall of the memory gate spacer.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: August 22, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Tai Tseng, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9741728
    Abstract: A method of manufacturing an embedded flash memory device is provided. A pair of gate stacks are formed spaced over a semiconductor substrate, and including floating gates and control gates over the floating gates. A common gate layer is formed over the gate stacks and the semiconductor substrate, and lining sidewalls of the gate stacks. A first etch is performed into the common gate layer to recess an upper surface of the common gate layer to below upper surfaces respectively of the gate stacks, and to form an erase gate between the gate stacks. Hard masks are respectively formed over the erase gate, a word line region of the common gate layer, and a logic gate region of the common gate layer. A second etch is performed into the common gate layer with the hard masks in place to concurrently form a word line and a logic gate.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: August 22, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9728545
    Abstract: A method for manufacturing an embedded flash memory device is provided. Memory and logic shallow trench isolation (STI) regions respectively extend into memory and logic regions of a substrate. The memory and logic STI regions have upper surfaces approximately coplanar with an upper surface of a pad layer overlying the substrate. A capping layer is formed overlying the logic region. A first etch is performed into the pad layer to expose memory gaps between the memory STI regions. A floating gate layer is formed filling the memory gaps. A second, dry etch is performed into the floating gate layer to etch the floating gate layer back to below upper surfaces of the capping layer and the memory STI regions. A third etch is performed into the memory STI regions to recess the memory STI regions. A fourth etch is performed into the floating gate layer to form floating gates.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: August 8, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9716097
    Abstract: Some embodiments of the present disclosure relate to a flash memory device. The flash memory device includes first and second individual source/drain (S/D) regions spaced apart within a semiconductor substrate. A common S/D region is arranged laterally between the first and second individual S/D regions, and is separated from the first individual S/D region by a first channel region and is separated from the second individual S/D region by a second channel region. An erase gate is arranged over the common S/D. A floating gate is disposed over the first channel region and is arranged to a first side of the erase gate. A control gate is disposed over the floating gate. A wordline is disposed over the first channel region and is spaced apart from the erase gate by the floating gate and the control gate. An upper surface of the wordline is a concave surface.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: July 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu, Sheng-Chieh Chen, Yung-Chang Chang
  • Patent number: 9711508
    Abstract: A capacitor structure includes a deep trench, a contact plug, a spacer and a metal-insulator-metal film. The deep trench extends into a crown oxide substrate, and the contact plug is disposed entirely below the crown oxide substrate. The spacer lines the deep trench, and the metal-insulator-metal film is disposed in the deep trench.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: July 18, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Hsueh Yang, Chung-Chiang Min, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9691883
    Abstract: A semiconductor structure of a split gate flash memory cell is provided. The semiconductor structure includes a semiconductor substrate having a source region and a drain region. Further, the semiconductor structure includes a floating gate, a word line, and an erase gate spaced over the semiconductor substrate between the source and drain regions with the floating gate arranged between the word line and the erase gate. The semiconductor structure further includes a first dielectric sidewall region disposed between the word line and the floating gate, as well as a second dielectric sidewall region disposed between the erase and floating gates. A thickness of the first dielectric sidewall region is greater than a thickness of the second dielectric sidewall region. A method of manufacturing the semiconductor structure and an integrated circuit including the semiconductor structure are also provided.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chieh Chen, Yuan-Tai Tseng, Chang-Ming Wu, Shih-Chang Liu