Patents by Inventor Chang Sun

Chang Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220141276
    Abstract: Establishing a data store of content metadata includes receiving, from a content player executing on a client device, an indication of content played by the content player, the indication comprising one or more pieces of metadata associated with the content. It further includes selecting a set of one or more rules applicable to parsing the metadata associated with the content. It further includes processing the metadata at least in part by applying the selected parsing rules to at least a portion of the metadata associated with the content. It further includes storing, to a data store, at least some of the processed metadata associated with the content.
    Type: Application
    Filed: June 21, 2019
    Publication date: May 5, 2022
    Inventors: Chang Sun, Lei Cao, Ningning Hu
  • Patent number: 11317479
    Abstract: Disclosed herein is a cooking apparatus. The cooking apparatus includes a cooking plate, a plurality of induction heating coils installed under the cooking plate, a plurality of drivers configured to supply driving power to the plurality of induction heating coils, and a controller configured to control the plurality of drivers to drive a plurality of groups to which the plurality of induction heating coils belong, respectively. Power output by a first driver, among the plurality of drivers, which drives a first group among the plurality of groups may be increased and power output by a second driver, among the plurality of drivers, which drives a second group among the plurality of groups may be decreased.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: April 26, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Nam Ju Park, Chang Sun Yun, Ji Woong Choi
  • Patent number: 11268659
    Abstract: A lighting apparatus comprises: a board, a plurality of light-emitting units disposed on the board, and a package structure enclosing all of the light-emitting units and having a volume less than 5000 mm3. The lighting apparatus has a light intensity greater than 150 lumens.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 8, 2022
    Assignee: EPISTAR CORPORATION
    Inventors: Wei-Chiang Hu, Keng-Chuan Chang, Chiu-Lin Yao, Chun-Wei Lin, Jung-Chang Sun
  • Publication number: 20220069145
    Abstract: The disclosure discloses a method for forming a doped epitaxial layer of contact image sensor. Epitaxial growth is performed in times. After each time of epitaxial growth, trench isolation and ion implantation are performed to form deep and shallow trench isolation running through a large-thickness doped epitaxial layer. Through cyclic operation of epitaxial growth, trench isolation and ion implantation, the photoresist and hard mask required at each time do not need to be too thick. In the process of trench isolation and ion implantation, the photoresist and etching morphologies are good, such that the lag problem of the prepared contact image sensor is improved. By forming the large-thickness doped epitaxial layer by adopting the method for forming the doped epitaxial layer of the contact image sensor, a high-performance contact image sensor applicable to high quantum efficiency, small pixel size and near infrared/infrared can be prepared.
    Type: Application
    Filed: January 6, 2021
    Publication date: March 3, 2022
    Applicant: Shanghai Huali Microelectronics Corporation
    Inventors: Chenchen Qiu, Jun Qian, Chang Sun, Zhengying Wei
  • Publication number: 20220064150
    Abstract: Amine substituted reverse pyrimidine compounds and forms thereof that inhibit the function and reduce the level of B-cell specific Moloney murine leukemia virus integration site 1 (Bmi-1) protein and methods for their use to inhibit Bmi-1 function and reduce the level of Bmi-1 to treat a cancer mediated by Bmi-1 are described herein.
    Type: Application
    Filed: November 10, 2021
    Publication date: March 3, 2022
    Inventors: Chang-Sun Lee, Ramil Baiazitov, Liangxian Cao, Thomas W. Davis, Wu Du, Ronggang Liu, Young-Choon Moon, Steven D. Paget, Hongyu Ren, Nadiya Sydorenko, Richard Gerald Wilde
  • Patent number: 11249119
    Abstract: An induction heating apparatus includes a coil driver configured to have a plurality of selectable resonant frequencies, and a controller configured to control the coil driver. The coil driver drives a coil according to a control signal from the controller.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: February 15, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang Sun Yun, Hong Joo Kang, Chang Seob Lim
  • Patent number: 11250657
    Abstract: Provided is a power plant operation history device. The power plant operation history device includes: a communication unit configured to detect RFID of a wearable device and communicate with a signal conversion device; and a control unit configured to determine a power plant control authority of a user based on user identification information obtained through the communication unit, transmit an operation permission signal allowing operation of an input device of a power plant control facility control device to the signal conversion device when it is determined that the user's power plant control authority exists, and normally process a user input from the input device through the signal conversion device.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: February 15, 2022
    Assignee: KEPCO ENGINEERING & CONSTRUCTION COMPANY, INC.
    Inventor: Chang Sun Yoon
  • Publication number: 20220037364
    Abstract: A memory device includes a substrate, word line layers, insulating layers, and memory cells. The word line layers are stacked above the substrate. The insulating layers are stacked above the substrate respectively alternating with the word line layers. The memory cells are distributed along a stacking direction of the word line layers and the insulating layers perpendicularly to a major surface of the substrate. Each memory cell includes a source line electrode and a bit line electrode, a first oxide semiconductor layer, and a second oxide semiconductor layer. The first oxide semiconductor layer is peripherally surrounded by one of the word line layers, the source line electrode, and the bit line electrode. The second oxide semiconductor layer is disposed between the one of the word line layers and the first oxide semiconductor layer.
    Type: Application
    Filed: March 12, 2021
    Publication date: February 3, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Jiang, Hung-Chang Sun, Kuo-Chang Chiang, Sheng-Chih Lai, TsuChing Yang
  • Publication number: 20220037363
    Abstract: A memory device includes transistor structures and memory arc wall structures. The memory arc wall structures are embedded in the transistor structures. The transistor structure includes a dielectric column, a source electrode and a drain electrode, a gate electrode layer and a channel wall structure. The source electrode and the drain electrode are located on opposite sides of the dielectric column. The gate electrode layer is around the dielectric column, the source electrode, and the drain electrode. The channel wall structure is extended from the source electrode to the drain electrode and surrounds the dielectric column. The channel wall structure is disposed between the gate electrode layer and the source electrode, between the gate electrode layer, and the drain electrode, and between the gate electrode layer and the dielectric column. The memory arc wall structure is extended on and throughout the channel wall structure.
    Type: Application
    Filed: March 3, 2021
    Publication date: February 3, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Jiang, Hung-Chang Sun, Sheng-Chih Lai, Kuo-Chang Chiang, TsuChing Yang
  • Publication number: 20220037253
    Abstract: A tridimensional memory cell array includes vertically stacked first conductive lines, vertically stacked second conductive lines, and first and second flights of steps. First and second conductive lines extend along a first direction. The second conductive lines are disposed at a distance along a second direction from the first conductive lines. First and second directions are orthogonal. Along the first direction, the first flights are disposed at opposite ends of the first conductive lines and the second flights are disposed at opposite ends of the second conductive lines. The first and second flights include landing pads and connective lines alternately disposed along the first direction. The landing pads are wider than the connective lines along the second direction. Along the second direction, landing pads of the first flights face connective lines of the second flights and landing pads of the second flights face connective lines of the first flights.
    Type: Application
    Filed: February 26, 2021
    Publication date: February 3, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: TsuChing Yang, Hung-Chang Sun, Sheng-Chih Lai, Yu-Wei Jiang, Kuo-Chang Chiang
  • Publication number: 20220028894
    Abstract: A method of forming a three-dimensional (3D) memory device includes: forming, over a substrate, a layer stack having alternating layers of a first conductive material and a first dielectric material; forming trenches extending vertically through the layer stack from an upper surface of the layer stack distal from the substrate to a lower surface of the layer stack facing the substrate; lining sidewalls and bottoms of the trenches with a memory film; forming a channel material over the memory film, the channel material including an amorphous material; filling the trenches with a second dielectric material after forming the channel material; forming memory cell isolation regions in the second dielectric material; forming source lines (SLs) and bit lines (BLs) that extend vertically in the second dielectric material on opposing sides of the memory cell isolation regions; and crystallizing first portions of the channel material after forming the SLs and BLs.
    Type: Application
    Filed: March 8, 2021
    Publication date: January 27, 2022
    Inventors: TsuChing Yang, Hung-Chang Sun, Kuo Chang Chiang, Sheng-Chih Lai, Yu-Wei Jiang
  • Publication number: 20220020775
    Abstract: A method of forming a ferroelectric random access memory (FeRAM) device includes: forming a layer stack over a substrate, where the layer stack includes alternating layers of a first dielectric material and a word line (WL) material; forming first trenches extending vertically through the layer stack; filling the first trenches, where filling the first trenches includes forming, in the first trenches, a ferroelectric material, a channel material over the ferroelectric material, and a second dielectric material over the channel material; after filling the first trenches, forming second trenches extending vertically through the layer stack, the second trenches being interleaved with the first trenches; and filling the second trenches, where filling the second trenches includes forming, in the second trenches, the ferroelectric material, the channel material over the ferroelectric material, and the second dielectric material over the channel material.
    Type: Application
    Filed: May 10, 2021
    Publication date: January 20, 2022
    Inventors: TsuChing Yang, Hung-Chang Sun, Kuo Chang Chiang, Sheng-Chih Lai, Yu-Wei Jiang
  • Publication number: 20210408045
    Abstract: A memory cell includes a thin film transistor over a semiconductor substrate, the thin film transistor including: a memory film contacting a word line; and an oxide semiconductor (OS) layer contacting a source line and a bit line, wherein the memory film is disposed between the OS layer and the word line, wherein the source line and the bit line each comprise a first conductive material touching the OS layer, and wherein the first conductive material has a work function less than 4.6. The memory cell further includes a dielectric material separating the source line and the bit line.
    Type: Application
    Filed: December 11, 2020
    Publication date: December 30, 2021
    Inventors: Kuo-Chang Chiang, Hung-Chang Sun, Sheng-Chih Lai, TsuChing Yang, Yu-Wei Jiang
  • Publication number: 20210408293
    Abstract: A transistor including a channel layer including an oxide semiconductor material and methods of making the same. The transistor includes a channel layer having a first oxide semiconductor layer having a first oxygen concentration, a second oxide semiconductor layer having a second oxygen concentration and a third oxide semiconductor layer having a third oxygen concentration. The second oxide semiconductor layer is located between the first semiconductor oxide layer and the third oxide semiconductor layer. The second oxygen concentration is lower than the first oxygen concentration and the third oxygen concentration.
    Type: Application
    Filed: April 14, 2021
    Publication date: December 30, 2021
    Inventors: Kuo CHIANG, Hung-Chang SUN, TsuChing YANG, Sheng-Chih LAI, Yu-Wei JIANG
  • Publication number: 20210408044
    Abstract: A memory cell includes a thin film transistor over a semiconductor substrate. The thin film transistor includes a memory film contacting a word line; and an oxide semiconductor (OS) layer contacting a source line and a bit line, wherein the memory film is disposed between the OS layer and the word line; and a dielectric material separating the source line and the bit line. The dielectric material forms an interface with the OS layer. The dielectric material comprises hydrogen, and a hydrogen concentration at the interface between the dielectric material and the OS layer is no more than 3 atomic percent (at %).
    Type: Application
    Filed: December 11, 2020
    Publication date: December 30, 2021
    Inventors: Kuo-Chang Chiang, Hung-Chang Sun, Sheng-Chih Lai, TsuChing Yang, Yu-Wei Jiang
  • Publication number: 20210399017
    Abstract: A device includes a dielectric layer, a conductive layer, electrode layers and an oxide semiconductor layer. The dielectric layer has a first surface and a second surface opposite to the first surface. The conductive layer is disposed on the first surface of the dielectric layer. The electrode layers are disposed on the second surface of the dielectric layer. The oxide semiconductor layer is disposed in between the second surface of the dielectric layer and the electrode layers, wherein the oxide semiconductor layer comprises a material represented by formula 1 (InxSnyTizMmOn). In formula 1, 0<x<1, 0?y<1, 0<z<1, 0<m<1, 0<n<1, and M represents at least one metal.
    Type: Application
    Filed: April 20, 2021
    Publication date: December 23, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chang Sun, Sheng-Chih Lai, TsuChing Yang, Yu-Wei Jiang, Kuo-Chang Chiang
  • Publication number: 20210399016
    Abstract: A memory device includes a multi-layer stack, a channel layer, a memory material layer and at least three conductive pillars. The multi-layer stack is disposed on a substrate and includes a plurality of conductive layers and a plurality of dielectric layers stacked alternately. The channel layer penetrates through the plurality of conductive layers and the plurality of dielectric layers. The memory material layer is disposed between the channel layer and each of the plurality of conductive layers and the plurality of dielectric layers. The conductive pillars are surrounded by the channel layer and the memory material layer, wherein the at least three conductive pillars are electrically connected to conductive lines respectively.
    Type: Application
    Filed: January 27, 2021
    Publication date: December 23, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Jiang, Sheng-Chih Lai, TsuChing Yang, Hung-Chang Sun, Kuo-Chang Chiang
  • Publication number: 20210391354
    Abstract: A memory device includes a first multi-layer stack, a channel layer, a charge storage layer, a first conductive pillar, and a second conductive pillar. The first multi-layer stack is disposed on a substrate and includes first conductive layers and first dielectric layers stacked alternately. The channel layer penetrates through the first conductive layers and the first dielectric layers, wherein the channel layer includes a first channel portion and a second channel portion separated from each other. The charge storage layer is disposed between the first conductive layers and the channel layer. The first conductive pillar is disposed between one end of the first channel portion and one end of the second channel portion. The second conductive pillar is disposed between the other end of the first channel portion and the other end of the second channel portion.
    Type: Application
    Filed: February 19, 2021
    Publication date: December 16, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chang Sun, Yu-Wei Jiang, TsuChing Yang, Kuo-Chang Chiang, Sheng-Chih Lai
  • Publication number: 20210375936
    Abstract: A memory cell includes a ferroelectric (FE) material contacting a word line; and an oxide semiconductor (OS) layer contacting a source line and a bit line, wherein the FE material is disposed between the OS layer and the word line. The OS layer comprises: a first region adjacent the FE material, the first region having a first concentration of a semiconductor element; a second region adjacent the source line, the second region having a second concentration of the semiconductor element; and a third region between the first region and the second region, the third region having a third concentration of the semiconductor element, the third concentration is greater than the second concentration and less than the first concentration.
    Type: Application
    Filed: January 15, 2021
    Publication date: December 2, 2021
    Inventors: Kuo-Chang Chiang, Hung-Chang Sun, Sheng-Chih Lai, TsuChing Yang, Yu-Wei Jiang
  • Publication number: 20210366720
    Abstract: A semiconductor device includes a stacked structure on a substrate. The stacked structure includes stepped regions and a central region between the stepped regions, an upper insulation layer on the stacked structure, and a capping insulation layer on the stepped regions of the stacked structure. The capping insulation layer includes a first upper end portion and a second upper end portion that are adjacent to the upper insulation layer. The upper insulation layer is between the first upper end portion and the second upper end portion. The first upper end portion and the second upper end portion extends a first height relative to the substrate that is different from a second height relative to the substrate of the second upper end portion.
    Type: Application
    Filed: August 3, 2021
    Publication date: November 25, 2021
    Inventors: CHANG SUN HWANG, HAN SOL SEOK, HYUN KU KANG, BYOUNG HO KWON, CHUNG KI MIN