Patents by Inventor Chao-Cheng Chen

Chao-Cheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210376141
    Abstract: A fin-type field-effect transistor (FinFET) device includes a plurality of fins formed over a substrate. The semiconductor device further includes a dielectric layer filled in a space between each fin and over a first portion of the plurality of fins and a dielectric trench formed in the dielectric layer. The dielectric trench has a vertical profile. The semiconductor device further includes a second portion of the plurality of fins recessed and exposed in the dielectric trench. The second portion of the plurality of fins have a rounded-convex-shape top profile.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Chia Tai Lin, Yih-Ann Lin, An-Shen Chang, Ryan Chen, Chao-Cheng Chen
  • Publication number: 20210366909
    Abstract: A semiconductor device includes a first semiconductor fin that is formed over a substrate and extends along a first lateral axis. The semiconductor device includes a second semiconductor fin that is also formed over the substrate and extends along the first lateral axis. At least a tip portion of the first semiconductor fin and at least a tip portion of the second semiconductor fin bend toward each other along a second lateral axis that is perpendicular to the first lateral axis.
    Type: Application
    Filed: March 9, 2021
    Publication date: November 25, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Duen-Huei Hou, Chao-Cheng Chen, Chun-Hung Lee, Hsin-Chih Chen, Kuo-Chin Liu, J.H. Wang
  • Publication number: 20210367058
    Abstract: A method includes forming a dummy gate electrode on a semiconductor region, forming a first gate spacer on a sidewall of the dummy gate electrode, and removing an upper portion of the first gate spacer to form a recess, wherein a lower portion of the first gate spacer remains, filling the recess with a second gate spacer, removing the dummy gate electrode to form a trench, and forming a replacement gate electrode in the trench.
    Type: Application
    Filed: September 11, 2020
    Publication date: November 25, 2021
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chen-Ping Chen, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Publication number: 20210359109
    Abstract: A device includes a fin protruding from a semiconductor substrate; a gate stack over and along a sidewall of the fin; a gate spacer along a sidewall of the gate stack and along the sidewall of the fin; an epitaxial source/drain region in the fin and adjacent the gate spacer; and a corner spacer between the gate stack and the gate spacer, wherein the corner spacer extends along the sidewall of the fin, wherein a first region between the gate stack and the sidewall of the fin is free of the corner spacer, wherein a second region between the gate stack and the gate spacer is free of the corner spacer.
    Type: Application
    Filed: November 23, 2020
    Publication date: November 18, 2021
    Inventors: Chen-Ping Chen, Kuei-Yu Kao, Shih-Yao Lin, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Publication number: 20210351281
    Abstract: A method includes depositing a dummy gate dielectric layer over a semiconductor region, depositing a dummy gate electrode layer, and performing a first etching process. An upper portion of the dummy gate electrode layer is etched to form an upper portion of a dummy gate electrode. The method further includes forming a protection layer on sidewalls of the upper portion of the dummy gate electrode, and performing a second etching process. A lower portion of the dummy gate electrode layer is etched to form a lower portion of the dummy gate electrode. A third etching process is then performed to etch the lower portion of the dummy gate electrode using the protection layer as an etching mask. The dummy gate electrode is tapered by the third etching process. The protection layer is removed, and the dummy gate electrode is replaced with a replacement gate electrode.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Publication number: 20210313450
    Abstract: A semiconductor device includes a fin extending from a substrate, a gate stack over and along a sidewall of the fin, a spacer along a first sidewall of the gate stack and the sidewall of the fin, a dummy gate material along the sidewall of the fin, wherein the dummy gate material is between the spacer and the gate stack, and a first epitaxial source/drain region in the fin and adjacent the gate stack.
    Type: Application
    Filed: June 11, 2021
    Publication date: October 7, 2021
    Inventors: Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Patent number: 11133307
    Abstract: Example embodiments relating to forming gate structures, e.g., for Fin Field Effect Transistors (FinFETs), are described. In an embodiment, a structure includes first and second device regions comprising first and second FinFETs, respectively, on a substrate. A distance between neighboring gate structures of the first FinFETs is less than a distance between neighboring gate structures of the second FinFETs. A gate structure of at least one of the first FinFETs has a first and second width at a level of and below, respectively, a top surface of a first fin. The first width is greater than the second width. A second gate structure of at least one of the second FinFETs has a third and fourth width at a level of and below, respectively a top surface of a second fin. A difference between the first and second widths is greater than a difference between the third and fourth widths.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: September 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Han Lin, Kuei-Yu Kao, Shih-Yao Lin, Ming-Ching Chang, Chao-Cheng Chen, Syun-Ming Jang
  • Patent number: 11127741
    Abstract: Example embodiments relating to forming gate structures, e.g., for Fin Field Effect Transistors (FinFETs), are described. In an embodiment, a structure includes first and second device regions comprising first and second FinFETs, respectively, on a substrate. A distance between neighboring gate structures of the first FinFETs is less than a distance between neighboring gate structures of the second FinFETs. A gate structure of at least one of the first FinFETs has a first and second width at a level of and below, respectively, a top surface of a first fin. The first width is greater than the second width. A second gate structure of at least one of the second FinFETs has a third and fourth width at a level of and below, respectively a top surface of a second fin. A difference between the first and second widths is greater than a difference between the third and fourth widths.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: September 21, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Han Lin, Kuei-Yu Kao, Shih-Yao Lin, Ming-Ching Chang, Chao-Cheng Chen, Syun-Ming Jang
  • Publication number: 20210273072
    Abstract: Semiconductor devices and methods of forming are described herein. The methods include depositing a dummy gate material layer over a fin etched into a substrate. A gate mask is then formed over the dummy gate material layer in a channel region of the fin. A dummy gate electrode is etched into the dummy gate material using the gate mask. A top spacer is then deposited over the gate mask and along sidewalls of a top portion of the dummy gate electrode. An opening is then etched through the remainder of the dummy gate material and through the fin. A bottom spacer is then formed along a sidewall of the opening and separates a bottom portion of the dummy gate electrode from the opening. A source/drain region is then formed in the opening and the dummy gate electrode is replaced with a metal gate stack.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 2, 2021
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chen-Ping Chen, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Patent number: 11107921
    Abstract: A device including a gate stack over a semiconductor substrate having a pair of spacers abutting sidewalls of the gate stack. A recess is formed in the semiconductor substrate adjacent the gate stack. The recess has a first profile having substantially vertical sidewalls and a second profile contiguous with and below the first profile. The first and second profiles provide a bottle-neck shaped profile of the recess in the semiconductor substrate, the second profile having a greater width within the semiconductor substrate than the first profile. The recess is filled with a semiconductor material. A pair of spacers are disposed overly the semiconductor substrate adjacent the recess.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eric Peng, Chao-Cheng Chen, Chii-Horng Li, Ming-Hua Yu, Shih-Hao Lo, Syun-Ming Jang, Tze-Liang Lee, Ying Hao Hsieh
  • Patent number: 11094825
    Abstract: A fin-type field-effect transistor (FinFET) device includes a plurality of fins formed over a substrate. The semiconductor device further includes a dielectric layer filled in a space between each fin and over a first portion of the plurality of fins and a dielectric trench formed in the dielectric layer. The dielectric trench has a vertical profile. The semiconductor device further includes a second portion of the plurality of fins recessed and exposed in the dielectric trench. The second portion of the plurality of fins have a rounded-convex-shape top profile.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: August 17, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia Tai Lin, Yih-Ann Lin, An-Shen Chang, Ryan Chen, Chao-Cheng Chen
  • Publication number: 20210242088
    Abstract: A method includes forming a patterned etching mask, which includes a plurality of strips, and etching a semiconductor substrate underlying the patterned etching mask to form a first plurality of semiconductor fins and a second plurality of semiconductor fins. The patterned etching mask is used as an etching mask in the etching. The method further includes etching the second plurality of semiconductor fins without etching the first plurality of semiconductor fins. An isolation region is then formed, and the first plurality of semiconductor fins has top portions protruding higher than a top surface of the isolation region.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 5, 2021
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Chia Tai Lin, Chao-Cheng Chen
  • Patent number: 11043576
    Abstract: A semiconductor device includes a fin extending from a substrate, a gate stack over and along a sidewall of the fin, a spacer along a first sidewall of the gate stack and the sidewall of the fin, a dummy gate material along the sidewall of the fin, wherein the dummy gate material is between the spacer and the gate stack, and a first epitaxial source/drain region in the fin and adjacent the gate stack.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: June 22, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Publication number: 20210134982
    Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming isolation regions on opposing sides of the fin; forming a dummy gate electrode over the fin; removing lower portions of the dummy gate electrode proximate to the isolation regions, where after removing the lower portions, there is a gap between the isolation regions and a lower surface of the dummy gate electrode facing the isolation regions; filling the gap with a gate fill material; after filling the gap, forming gate spacers along sidewalls of the dummy gate electrode and along sidewalls of the gate fill material; and replacing the dummy gate electrode and the gate fill material with a metal gate.
    Type: Application
    Filed: March 18, 2020
    Publication date: May 6, 2021
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Publication number: 20210123742
    Abstract: A method of movement tracking includes: performing, when it is determined that a strength of an external signal is greater than a threshold, positioning based on the signal to generate a first record; performing, when it is determined that the strength is not greater than the threshold, measurement of a movement variation to generate a second record; performing, when it is determined that the strength increases from being not greater than the threshold to being greater than the threshold, positioning based on the signal to obtain coordinates of an exact position; and computing corrected data based on the second record and the coordinates, and generating a movement path record based on the first record and the corrected data.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 29, 2021
    Applicant: URSrobot Inc.
    Inventors: Yaun-Ren YANG, Chung-Hou WU, Chao-Cheng CHEN
  • Publication number: 20210125833
    Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming isolation regions on opposing sides of the fin; forming a dummy gate over the fin; reducing a thickness of a lower portion of the dummy gate proximate to the isolation regions, where after reducing the thickness, a distance between opposing sidewalls of the lower portion of the dummy gate decreases as the dummy gate extends toward the isolation regions; after reducing the thickness, forming a gate fill material along at least the opposing sidewalls of the lower portion of the dummy gate; forming gate spacers along sidewalls of the dummy gate and along sidewalls of the gate fill material; and replacing the dummy gate with a metal gate.
    Type: Application
    Filed: March 6, 2020
    Publication date: April 29, 2021
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Patent number: 10991627
    Abstract: A method includes forming a patterned etching mask, which includes a plurality of strips, and etching a semiconductor substrate underlying the patterned etching mask to form a first plurality of semiconductor fins and a second plurality of semiconductor fins. The patterned etching mask is used as an etching mask in the etching. The method further includes etching the second plurality of semiconductor fins without etching the first plurality of semiconductor fins. An isolation region is then formed, and the first plurality of semiconductor fins has top portions protruding higher than a top surface of the isolation region.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Chia Tai Lin, Chao-Cheng Chen
  • Patent number: 10985261
    Abstract: A structure and method for implementation of dummy gate structures within multi-gate device structures includes a semiconductor device including an isolation region that separates a first and second active region. The first active region is adjacent to a first side of the isolation region and the second active region is adjacent to a second side of the isolation region. A device including a source, a drain, and a gate is formed within the first active region. One of the source and drain regions are disposed adjacent to the isolation region. A dummy gate is formed at least partially over the isolation region and adjacent to the one of the source and drain regions. In various examples, the gate includes a first dielectric layer having a first thickness and the dummy gate includes a second dielectric layer having a second thickness greater than the first thickness.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: April 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chu Liu, Kuei-Shun Chen, Chiang Mu-Chi, Chao-Cheng Chen
  • Patent number: 10957600
    Abstract: A method includes forming a patterned etching mask, which includes a plurality of strips, and etching a semiconductor substrate underlying the patterned etching mask to form a first plurality of semiconductor fins and a second plurality of semiconductor fins. The patterned etching mask is used as an etching mask in the etching. The method further includes etching the second plurality of semiconductor fins without etching the first plurality of semiconductor fins. An isolation region is then formed, and the first plurality of semiconductor fins has top portions protruding higher than a top surface of the isolation region.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Chia Tai Lin, Chao-Cheng Chen
  • Publication number: 20210083087
    Abstract: Embodiments relate to integrated circuit fabrication, and more particularly to a metal gate electrode. An exemplary structure for a semiconductor device comprises a substrate comprising a major surface; a first gate electrode on the major surface comprising a first layer of multi-layer material; a first dielectric material adjacent to one side of the first gate electrode; and a second dielectric material adjacent to the other 3 sides of the first gate electrode, wherein the first dielectric material and the second dielectric material collectively surround the first gate electrode.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: Jr-Jung Lin, Chih-Han Lin, Jin-Aun Ng, Ming-Ching Chang, Chao-Cheng Chen