Patents by Inventor Chao-Hsiung Wang

Chao-Hsiung Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10164068
    Abstract: A method comprises removing a portion of a fin to form a trench over a lower portion of the fin, wherein the lower portion is formed of a first semiconductor material, growing a second semiconductor material in the trench to form a middle portion of the fin, forming a first carbon doped layer over the middle portion of the fin, growing the first semiconductor material over the first carbon doped layer to form an upper portion of the fin, replacing outer portions of the upper portion of the fin with a second carbon doped layer and drain/source regions, wherein the first carbon doped layer and the second carbon doped layer are separated by the upper portion of the fin and applying a thermal oxidation process to the middle portion of the fin to form an oxide outer layer.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 10157920
    Abstract: A multiple-fin device includes a substrate and a plurality of fins formed on the substrate. Source and drain regions are formed in the respective fins. A dielectric layer is formed on the substrate. The dielectric layer has a first thickness adjacent one side of a first fin and having a second thickness, different from the first thickness, adjacent an opposite side of the fin. A continuous gate structure is formed overlying the plurality of fins, the continuous gate structure being adjacent a top surface of each fin and at least one sidewall surface of at least one fin. By adjusting the dielectric layer thickness, channel width of the resulting device can be fine-tuned.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Publication number: 20180350807
    Abstract: Systems and methods are provided for fabricating semiconductor device structures on a substrate. A first fin structure is formed on a substrate. A second fin structure is formed on the substrate. A first semiconductor material is formed on both the first fin structure and the second fin structure. A second semiconductor material is formed on the first semiconductor material on both the first fin structure and the second fin structure. The first semiconductor material on the first fin structure is oxidized to form a first oxide. The second semiconductor material on the first fin structure is removed. A first dielectric material and a first electrode are formed on the first fin structure. A second dielectric material and a second electrode are formed on the second fin structure.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: Chi-Wen LIU, Chao-Hsiung WANG
  • Publication number: 20180337077
    Abstract: Systems and methods are provided for annealing a semiconductor structure. In one embodiment, the method includes providing an energy-converting structure proximate a semiconductor structure, the energy-converting structure comprising a material having a loss tangent larger than that of the semiconductor structure; providing a heat reflecting structure between the semiconductor structure and the energy-converting structure; and providing microwave radiation to the energy-converting structure and the semiconductor structure. The semiconductor structure may include at least one material selected from the group consisting of boron-doped silicon germanium, silicon phosphide, titanium, nickel, silicon nitride, silicon dioxide, silicon carbide, n-type doped silicon, and aluminum capped silicon carbide. The heat reflecting structure may include a material substantially transparent to microwave radiation and having substantial reflectivity with respect to infrared radiation.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Inventors: Chun-Hsiung Tsai, Zi-Wei Fang, Chao-Hsiung Wang
  • Patent number: 10103253
    Abstract: The present disclosure provides one embodiment of a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a first region and a second region; a first semiconductor mesa formed on the semiconductor substrate within the first region; a second semiconductor mesa formed on the semiconductor substrate within the second region; and a field effect transistor (FET) formed on the semiconductor substrate. The FET includes a first doped feature of a first conductivity type formed in a top portion of the first semiconductor mesa; a second doped feature of a second conductivity type formed in a bottom portion of the first semiconductor mesa, the second semiconductor mesa, and a portion of the semiconductor substrate between the first and second semiconductor mesas; a channel in a middle portion of the first semiconductor mesa and interposed between the source and drain; and a gate formed on sidewall of the first semiconductor mesa.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: October 16, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay Chuang, Yi-Ren Chen, Chi-Wen Liu, Chao-Hsiung Wang, Ming Zhu
  • Publication number: 20180277577
    Abstract: A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
    Type: Application
    Filed: June 4, 2018
    Publication date: September 27, 2018
    Inventors: Yun-Wei Cheng, Horng Huei Tseng, Chao-Hsiung Wang, Chun-Hao Chou, Tsung-Han Tsai, Kuo-Cheng Lee, Tzu-Hsuan Hsu, Yung-Lung Hsu
  • Patent number: 10083921
    Abstract: Some embodiments relate to a die that has been formed by improved dicing techniques. The die includes a substrate which includes upper and lower substrate surfaces with a vertical substrate sidewall extending therebetween. The vertical substrate sidewall corresponds to an outermost edge of the substrate. A device layer is arranged over the upper substrate surface. A crack stop is arranged over an upper surface of the device layer and has an outer perimeter that is spaced apart laterally from the vertical substrate sidewall. The die exhibits a tapered sidewall extending downward through at least a portion of the device layer to meet the vertical substrate sidewall.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: September 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Syuan Lin, Jiun-Lei Jerry Yu, Ming-Cheng Lin, Hsin-Chieh Huang, Chao-Hsiung Wang
  • Patent number: 10084071
    Abstract: A representative fin field effect transistor (FinFET) includes a substrate having a major surface; a fin structure protruding from the major surface having a lower portion comprising a first semiconductor material having a first lattice constant; an upper portion comprising the first semiconductor material. A bottom portion of the upper portion comprises a dopant with a first peak concentration. A middle portion is disposed between the lower portion and upper portion, where the middle portion comprises a second semiconductor material having a second lattice constant different from the first lattice constant. An isolation structure surrounds the fin structure, where a portion of the isolation structure adjacent to the bottom portion of the upper portion comprises the dopant with a second peak concentration equal to or greater than the first peak concentration.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20180219019
    Abstract: A method for forming an antifuse on a substrate is provided, which comprises: forming a first conductive material on the substrate; placing the first conductive material in an electrolytic solution; performing anodic oxidation on the first conductive material to form a nanowire made of the first conductive material and surrounded by a first dielectric material formed during the anodic oxidation and to form the antifuse on the nanowire; and forming a second conductive material on the antifuse to sandwich the antifuse between the first conductive material and the second conductive material.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Jenn-Gwo Hwu, Wei-Cheng Tian, Samuel C. Pan, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 10037991
    Abstract: Systems and methods are provided for fabricating semiconductor device structures on a substrate. A first fin structure is formed on a substrate. A second fin structure is formed on the substrate. A first semiconductor material is formed on both the first fin structure and the second fin structure. A second semiconductor material is formed on the first semiconductor material on both the first fin structure and the second fin structure. The first semiconductor material on the first fin structure is oxidized to form a first oxide. The second semiconductor material on the first fin structure is removed. A first dielectric material and a first electrode are formed on the first fin structure. A second dielectric material and a second electrode are formed on the second fin structure.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: July 31, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 10037906
    Abstract: Systems and methods are provided for annealing a semiconductor structure. In one embodiment, the method includes providing an energy-converting structure proximate a semiconductor structure, the energy-converting structure comprising a material having a loss tangent larger than that of the semiconductor structure; providing a heat reflecting structure between the semiconductor structure and the energy-converting structure; and providing microwave radiation to the energy-converting structure and the semiconductor structure. The semiconductor structure may include at least one material selected from the group consisting of boron-doped silicon germanium, silicon phosphide, titanium, nickel, silicon nitride, silicon dioxide, silicon carbide, n-type doped silicon, and aluminum capped silicon carbide. The heat reflecting structure may include a material substantially transparent to microwave radiation and having substantial reflectivity with respect to infrared radiation.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 31, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chun-Hsiung Tsai, Zi-Wei Fang, Chao-Hsiung Wang
  • Publication number: 20180197782
    Abstract: A method includes forming Shallow Trench Isolation (STI) regions in a semiconductor substrate and a semiconductor strip between the STI regions. The method also include replacing a top portion of the semiconductor strip with a first semiconductor layer and a second semiconductor layer over the first semiconductor layer. The first semiconductor layer has a first germanium percentage higher than a second germanium percentage of the second semiconductor layer. The method also includes recessing the STI regions to form semiconductor fins, forming a gate stack over a middle portion of the semiconductor fin, and forming gate spacers on sidewalls of the gate stack. The method further includes forming fin spacers on sidewalls of an end portion of the semiconductor fin, recessing the end portion of the semiconductor fin, and growing an epitaxial region over the end portion of the semiconductor fin.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Kuo-Cheng Ching, Ting-Hung Hsu, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20180197955
    Abstract: A method comprises providing a semiconductor alloy layer on a semiconductor substrate, forming a gate structure on the semiconductor alloy layer, forming source and drain regions in the semiconductor substrate on both sides of the gate structure, removing at least a portion of the semiconductor alloy layer overlying the source and drain regions, and forming a metal silicide region over the source and drain regions.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Chien-Chao HUANG, Yee-Chia YEO, Chao-Hsiung WANG, Chun-Chieh LIN, Chenming HU
  • Publication number: 20180197783
    Abstract: A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor (FinFET) is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 10020210
    Abstract: Systems and methods are provided for annealing a semiconductor structure using microwave radiation. A semiconductor structure is provided. One or more energy-converting materials capable of increasing the semiconductor structure's absorption of microwave radiation are provided. Microwave radiation is applied to the energy-converting materials and the semiconductor structure to anneal the semiconductor structure for fabricating semiconductor devices. First local temperatures associated with one or more first zones of the semiconductor structure are detected. The microwave radiation applied to the energy-converting materials and the semiconductor structure is adjusted based at least in part on the detected first local temperatures.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: July 10, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chun-Hsiung Tsai, Zi-Wei Fang, Chao-Hsiung Wang
  • Publication number: 20180175164
    Abstract: A three-dimensional (3D) capacitor includes a semiconductor substrate; a fin structure including one or more fins formed on the semiconductor substrate; an insulator material formed between each of the one or more fins; a dielectric layer formed on a first portion of the fin structure; a first electrode formed on the dielectric layer; spacers formed on sidewalls of the first electrode; and a second electrode formed on a second portion of the fin structure. The first and second portions are different. The second electrode includes a surface that is in direct contact with a surface of the spacers.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 21, 2018
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9997415
    Abstract: A semiconductor device includes a substrate, first and second metals, and a second semiconductor material. The substrate includes a first semiconductor material and has first and second substrate portions. The first metal is reacted with the first substrate portion of the substrate. The second semiconductor material is above the second substrate portion of the substrate and is different from the first semiconductor material. The second metal is reacted with the second semiconductor material.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 12, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9991307
    Abstract: A back side illumination (BSI) image sensor with a dielectric grid opening having a planar lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the planar lower surface of the dielectric grid opening.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: June 5, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Horng Huei Tseng, Chao-Hsiung Wang, Chun-Hao Chou, Tsung-Han Tsai, Kuo-Cheng Lee, Tzu-Hsuan Hsu, Yung-Lung Hsu
  • Publication number: 20180151566
    Abstract: A multiple-fin device includes a substrate and a plurality of fins formed on the substrate. Source and drain regions are formed in the respective fins. A dielectric layer is formed on the substrate. The dielectric layer has a first thickness adjacent one side of a first fin and having a second thickness, different from the first thickness, adjacent an opposite side of the fin. A continuous gate structure is formed overlying the plurality of fins, the continuous gate structure being adjacent a top surface of each fin and at least one sidewall surface of at least one fin. By adjusting the dielectric layer thickness, channel width of the resulting device can be fine-tuned.
    Type: Application
    Filed: January 29, 2018
    Publication date: May 31, 2018
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9978870
    Abstract: A fin structure suitable for a FinFET and having a buried insulator layer is disclosed. In an exemplary embodiment, a semiconductor device comprises a substrate with a first semiconductor material and having a fin structure formed thereupon. The fin structure includes a lower region proximate to the substrate, a second semiconductor material disposed on the lower region, a third semiconductor material disposed on the second semiconductor material, and an insulating material selectively disposed on the second semiconductor material such that the insulating material electrically isolates a channel region of the fin structure and further such that the insulating material exerts a strain on the channel region. The semiconductor device further comprises an isolation feature disposed adjacent to the fin structure.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: May 22, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Chao-Hsiung Wang, Chi-Wen Liu, Guan-Lin Chen