Patents by Inventor Chao-Hsiung Wang

Chao-Hsiung Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9754842
    Abstract: An embodiment fin field effect transistor (FinFET) device includes fins formed from a semiconductor substrate, a non-recessed shallow trench isolation (STI) region disposed between the fins, and a dummy gate disposed on the non-recessed STI region.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: September 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9741810
    Abstract: The disclosure relates to a semiconductor device. An exemplary structure for a nanowire structure comprises a first semiconductor material having a first lattice constant and a first linear thermal expansion constant; and a second semiconductor material having a second lattice constant and a second linear thermal expansion constant surrounding the first semiconductor material, wherein a ratio of the first lattice constant to the second lattice constant is from 0.98 to 1.02, wherein a ratio of the first linear thermal expansion constant to the second linear thermal expansion constant is greater than 1.2 or less than 0.8.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: August 22, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9711463
    Abstract: Some embodiments relate to a method of dicing a semiconductor wafer. The semiconductor wafer that includes a device structure that is formed within a device layer. The device layer is arranged within an upper surface the device layer. A crack stop is formed, which surrounds the device structure and reinforces the semiconductor wafer to prevent cracking during dicing. A laser is used to form a groove along a scribe line outside the crack stop. The groove extends completely through the device layer, and into an upper surface region of the semiconductor wafer. The semiconductor wafer is then cut along the grooved scribe line with a cutting blade to singulate the semiconductor wafer into two or more die. By extending the groove completely through the device layer, the method avoids damage to the device layer caused by the blade saw, and thus avoids an associated performance degradation of the device structure.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: July 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Syuan Lin, Jiun-Lei Jerry Yu, Ming-Cheng Lin, Hsin-Chieh Huang, Chao-Hsiung Wang
  • Patent number: 9698026
    Abstract: Systems and methods are provided for annealing a semiconductor structure. In one embodiment, the method includes providing an energy-converting structure proximate a semiconductor structure, the energy-converting structure comprising a material having a loss tangent larger than that of the semiconductor structure; providing a heat reflecting structure between the semiconductor structure and the energy-converting structure; and providing microwave radiation to the energy-converting structure and the semiconductor structure. The semiconductor structure may include at least one material selected from the group consisting of boron-doped silicon germanium, silicon phosphide, titanium, nickel, silicon nitride, silicon dioxide, silicon carbide, n-type doped silicon, and aluminum capped silicon carbide. The heat reflecting structure may include a material substantially transparent to microwave radiation and having substantial reflectivity with respect to infrared radiation.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: July 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chun-Hsiung Tsai, Zi-Wei Fang, Chao-Hsiung Wang
  • Patent number: 9691621
    Abstract: The disclosure relates to a semiconductor device and methods of forming same. A representative structure for a semiconductor device comprises a substrate; a nanowire structure protruding from the substrate having a channel region disposed between a source region and a drain region; a pair of silicide regions extending into opposite sides of the source region, wherein each of the pair of silicide regions comprise a vertical portion adjacent to the source region and a horizontal portion adjacent to the substrate; and a metal gate surrounding a portion the channel region.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9685369
    Abstract: A representative method for fabricating a field effect transistor comprises forming a source region and a drain region disposed in a substrate; forming a gate structure over the substrate, the gate structure comprising sidewalls and a top surface, the gate structure interposing the source region and the drain region; forming a contact etch stop layer (CESL) over at least a portion of the top surface of the gate structure; forming an interlayer dielectric layer over the CESL; forming a gate contact extending through the interlayer dielectric layer; and forming a source contact and a drain contact extending through the interlayer dielectric layer, wherein a first distance between an edge of the source contact and a first corresponding edge of the CESL is about 1 nm to about 10 nm.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 20, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9673280
    Abstract: A method comprises providing a semiconductor alloy layer on a semiconductor substrate, forming a gate structure on the semiconductor alloy layer, forming source and drain regions in the semiconductor substrate on both sides of the gate structure, removing at least a portion of the semiconductor alloy layer overlying the source and drain regions, and forming a metal silicide region over the source and drain regions.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: June 6, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chao Huang, Yee-Chia Yeo, Chao-Hsiung Wang, Chun-Chieh Lin, Chenming Hu
  • Patent number: 9640487
    Abstract: A wafer alignment apparatus includes a light source, a light detection device, and a rotation device configured to rotate a first wafer and a second wafer. The light source is configured to provide a first light directed to the first wafer and a second light directed to the second wafer. The light detection device is configured to detect reflected light intensity from the first wafer to find a position of at least one wafer alignment mark of the first wafer and to detect reflected light intensity from the second wafer to find a position of at least one wafer alignment mark of the second wafer.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: May 2, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hsiang Tseng, Chao-Hsiung Wang, Chin-Hsiang Lin, Heng-Hsin Liu, Ho-Ping Chen, Jui-Chun Peng
  • Publication number: 20170098717
    Abstract: An embodiment is a structure including a first active device in a first region of a substrate, the first active device including a first layer of a two-dimensional (2-D) material, the first layer having a first thickness, and a second active device in a second region of the substrate, the second active device including a second layer of the 2-D material, the second layer having a second thickness, the 2-D material including a transition metal dichalcogenide (TMD), the second thickness being different than the first thickness.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 6, 2017
    Inventors: Ling-Yen Yeh, Chao Hsiung Wang, Yee-Chia Yeo
  • Publication number: 20170092746
    Abstract: A method comprises recessing a substrate to form a fin enclosed by an isolation region, wherein the substrate is formed of a first semiconductor material, recessing the fin to form a trench over a lower portion of the fin, growing a second semiconductor material in the trench to form a middle portion of the fin through a first epitaxial process, forming a first carbon doped layer over the lower portion through a second epitaxial process, growing the first semiconductor material over the first carbon doped layer to form an upper portion of the fin through a third epitaxial process, forming a first source/drain region through a fourth epitaxial process, wherein a second carbon doped layer is formed underlying the first source/drain region and applying a thermal oxidation process to the middle portion of the fin to form an oxide outer layer.
    Type: Application
    Filed: December 9, 2016
    Publication date: March 30, 2017
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20170069544
    Abstract: A semiconductor device includes a substrate, first and second metals, and a second semiconductor material. The substrate includes a first semiconductor material and has first and second substrate portions. The first metal is reacted with the first substrate portion of the substrate. The second semiconductor material is above the second substrate portion of the substrate and is different from the first semiconductor material. The second metal is reacted with the second semiconductor material.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9570493
    Abstract: A back side illumination (BSI) image sensor with a dielectric grid opening having a curved lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the curved lower surface of the dielectric grid opening. A method for manufacturing the BSI image sensor is also provided.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: February 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Horng-Huei Tseng, Chao-Hsiung Wang, Chun-Hao Chou, Tsung-Han Tsai, Kuo-Cheng Lee, Yung-Lung Hsu
  • Publication number: 20170005004
    Abstract: A method of forming a fin structure of a semiconductor device, such as a fin field effect transistor (FinFET) is provided. In an embodiment, trenches are formed in a substrate, and a liner is formed along sidewalls of the trenches, wherein a region between adjacent trenches define a fin. A dielectric material is formed in the trenches. Portions of the semiconductor material of the fin are replaced with a second semiconductor material and a third semiconductor material, the second semiconductor material having a different lattice constant than the substrate and the third semiconductor material having a different lattice constant than the second semiconductor material. Portions of the second semiconductor material are oxidized.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Kuo-Cheng Ching, Jiun-Jia Huang, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 9520498
    Abstract: A device comprises a substrate comprising silicon, a fin structure comprising a lower portion formed of silicon and enclosed by an isolation region, a middle portion formed of silicon-germanium-carbon, wherein the middle portion is enclosed by an oxide layer, an upper portion formed of silicon, wherein the upper portion comprises a channel and a silicon-carbon layer formed between the middle portion and the upper portion, a first source/drain region comprising a first silicon-phosphorus region and a first silicon-carbon layer formed underlying the first silicon-phosphorus region and a second source/drain region comprising a second silicon-phosphorus region and a second silicon-carbon layer formed underlying the second silicon-phosphorus region.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: December 13, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen, Chao Hsiung Wang, Chi-Wen Liu
  • Publication number: 20160351414
    Abstract: Systems and methods are provided for annealing a semiconductor structure. In one embodiment, the method includes providing an energy-converting structure proximate a semiconductor structure, the energy-converting structure comprising a material having a loss tangent larger than that of the semiconductor structure; providing a heat reflecting structure between the semiconductor structure and the energy-converting structure; and providing microwave radiation to the energy-converting structure and the semiconductor structure. The semiconductor structure may include at least one material selected from the group consisting of boron-doped silicon germanium, silicon phosphide, titanium, nickel, silicon nitride, silicon dioxide, silicon carbide, n-type doped silicon, and aluminum capped silicon carbide. The heat reflecting structure may include a material substantially transparent to microwave radiation and having substantial reflectivity with respect to infrared radiation.
    Type: Application
    Filed: August 11, 2016
    Publication date: December 1, 2016
    Inventors: CHUN-HSIUNG TSAI, ZI-WEI FANG, CHAO-HSIUNG WANG
  • Patent number: 9508603
    Abstract: A method includes providing a first source/drain contact, providing a second source/drain contact, and surrounding the first and second source/drain contacts with a dielectric material layer. The providing a first source/drain contact and the providing a second source/drain contact are performed one after the other.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: November 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 9496397
    Abstract: The present disclosure relates to a Fin field effect transistor (FinFET) device having epitaxial enhancement structures, and an associated method of fabrication. In some embodiments, the FinFET device has a semiconductor substrate having a plurality of isolation regions overlying the semiconductor substrate. A plurality of three-dimensional fins protrude from a top surface of the semiconductor substrate at locations between the plurality of isolation regions. Respective three-dimensional fins have an epitaxial enhancement structure that introduces a strain into the three-dimensional fin. The epitaxial enhancement structures are disposed over a semiconductor material within the three-dimensional fin at a position that is more than 10 nanometers above a bottom of an adjacent isolation region. Forming the epitaxial enhancement structure at such a position provides for sufficient structural support to avoid isolation region collapse.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20160307942
    Abstract: The present disclosure relates to a BSI image sensor having a color filter disposed between sidewalls of a metallic grid, and a method of formation. In some embodiments, the BSI image sensor has a pixel sensor located within a semiconductor substrate, and a layer of dielectric material overlying the pixel sensor. A metallic grid is separated from the semiconductor substrate by the layer of dielectric material, and a stacked grid is arranged over the metallic grid. The stacked grid abuts an opening that vertically extends from an upper surface of the stacked grid to a position that is laterally arranged between sidewalls of the metallic grid. A color filter can be arranged within the opening. By having the color filter vertically extend between sidewalls of the metallic grid, a distance between the color filter and the pixel sensor can be made small, thereby improving performance of the BSI image sensor.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: Yun-Wei Cheng, Horng-Huei Tseng, Chao-Hsiung Wang, Chun-Hao Chou, Tsung-Han Tsai, Kuo-Cheng Lee, Yung-Lung Hsu
  • Publication number: 20160307941
    Abstract: A back side illumination (BSI) image sensor with stacked grid shifting is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid segment is arranged over the pixel sensor and has a metallic grid opening therein. A center of the metallic grid opening is laterally shifted from a center of the pixel sensor. A dielectric grid segment is arranged over the metallic grid and has a dielectric grid opening therein. A center of the dielectric grid opening is laterally shifted from the center of the pixel sensor. A method for manufacturing the BSI image sensor is also provided.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: Yun-Wei Cheng, Horng-Huei Tseng, Chao-Hsiung Wang, Chun-Hao Chou, Tsung-Han Tsai, Kuo-Cheng Lee, Yung-Lung Hsu
  • Publication number: 20160307940
    Abstract: A back side illumination (BSI) image sensor with a dielectric grid opening having a curved lower surface is provided. A pixel sensor is arranged within a semiconductor substrate. A metallic grid is arranged over the pixel sensor and defines a sidewall of a metallic grid opening. A dielectric grid is arranged over the metallic grid and defines a sidewall of the dielectric grid opening. A capping layer is arranged over the metallic grid, and defines the curved lower surface of the dielectric grid opening. A method for manufacturing the BSI image sensor is also provided.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: Yun-Wei Cheng, Horng-Huei Tseng, Chao-Hsiung Wang, Chun-Hao Chou, Tsung-Han Tsai, Kuo-Cheng Lee, Yung-Lung Hsu