Patents by Inventor Charles G. Woychik

Charles G. Woychik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140376200
    Abstract: Microelectronic assemblies and methods for making the same are disclosed herein. In one embodiment, a method of forming a microelectronic assembly comprises assembling first and second components to have first major surfaces of the first and second components facing one another and spaced apart from one another by a predetermined spacing, the first component having first and second oppositely-facing major surfaces, a first thickness extending in a first direction between the first and second major surfaces, and a plurality of first metal connection elements at the first major surface, the second component having a plurality of second metal connection elements at the first major surface of the second component; and plating a plurality of metal connector regions each connecting and extending continuously between a respective first connection element and a corresponding second connection element opposite the respective first connection element in the first direction.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Applicant: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Belgacem Haba, Charles G. Woychik, Michael Newman, Terrence Caskey
  • Publication number: 20140339702
    Abstract: Structures and methods of forming the same are disclosed herein. In one embodiment, a structure can comprise a region having first and second oppositely facing surfaces. A barrier region can overlie the region. An alloy region can overlie the barrier region. The alloy region can include a first metal and one or more elements selected from the group consisting of silicon (Si), germanium (Ge), indium (Id), boron (B), arsenic (As), antimony (Sb), tellurium (Te), or cadmium (Cd).
    Type: Application
    Filed: May 20, 2013
    Publication date: November 20, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Pezhman Monadgemi, Terrence Caskey
  • Patent number: 8884427
    Abstract: A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 11, 2014
    Assignee: Invensas Corporation
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
  • Patent number: 8846447
    Abstract: A method of attaching a microelectronic element to a substrate can include aligning the substrate with a microelectronic element, the microelectronic element having a plurality of spaced-apart electrically conductive bumps each including a bond metal, and reflowing the bumps. The bumps can be exposed at a front surface of the microelectronic element. The substrate can have a plurality of spaced-apart recesses extending from a first surface thereof. The recesses can each have at least a portion of one or more inner surfaces that are non-wettable by the bond metal of which the bumps are formed. The reflowing of the bumps can be performed so that at least some of the bond metal of each bump liquefies and flows at least partially into one of the recesses and solidifies therein such that the reflowed bond material in at least some of the recesses mechanically engages the substrate.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 30, 2014
    Assignee: Invensas Corporation
    Inventors: Charles G. Woychik, Se Young Yang, Pezhman Monadgemi, Terrence Caskey, Cyprian Emeka Uzoh
  • Publication number: 20140264794
    Abstract: A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Invensas Corporation
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Terrence Caskey
  • Publication number: 20140240938
    Abstract: An interposer can have conductive elements at a first side and terminals at a second side opposite therefrom, for connecting with a microelectronic element and a second component, respectively. The component can include a first element having a thermal expansion coefficient less than 10 ppm/° C., and an insulating second element, with a plurality of openings extending from the second side through the second element towards the first element. Conductive structure extending through the openings in the second element and through the first element electrically connects the terminals with the conductive elements.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: Michael Newman, Cyprian Emeka Uzoh, Charles G. Woychik, Pezhman Monadgemi, Terrence Caskey
  • Publication number: 20140217607
    Abstract: A component can include a substrate and a conductive via extending within an opening in the substrate. The substrate can have first and second opposing surfaces. The opening can extend from the first surface towards the second surface and can have an inner wall extending away from the first surface. A dielectric material can be exposed at the inner wall. The conductive via can define a relief channel within the opening adjacent the first surface. The relief channel can have an edge within a first distance from the inner wall in a direction of a plane parallel to and within five microns below the first surface, the first distance being the lesser of one micron and five percent of a maximum width of the opening in the plane. The edge can extend along the inner wall to span at least five percent of a circumference of the inner wall.
    Type: Application
    Filed: March 11, 2014
    Publication date: August 7, 2014
    Applicant: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Kishor V. Desai, Huailiang Wei, Craig Mitchell, Belgacem Haba
  • Publication number: 20140201994
    Abstract: A component can include a substrate having a first surface and a second surface remote therefrom, an opening extending in a direction between the first and second surfaces, and a conductive via extending within the opening. The substrate can have a CTE less than 10 ppm/° C. The conductive via can include a plurality of base particles each including a first region of a first metal substantially covered by a layer of a second metal different from the first metal. The base particles can be metallurgically joined together and the second metal layers of the particles can be at least partially diffused into the first regions. The conductive via can include voids interspersed between the joined base particles. The voids can occupy 10% or more of a volume of the conductive via.
    Type: Application
    Filed: March 19, 2014
    Publication date: July 24, 2014
    Applicant: TESSERA, INC.
    Inventors: Charles G. Woychik, Kishor Desai, Ilyas Mohammed, Terrence Caskey
  • Patent number: 8785790
    Abstract: A component includes a support structure having first and second spaced-apart and parallel surfaces and a plurality of conductive elements extending in a direction between the first and second surfaces. Each conductive element contains an alloy of a wiring metal selected from the group consisting of copper, aluminum, nickel and chromium, and an additive selected from the group consisting of Gallium, Germanium, Indium, Selenium, Tin, Sulfur, Silver, Phosphorus, and Bismuth. The alloy has a composition that varies with distance in at least one direction across the conductive element. A concentration of the additive is less than or equal to 5% of the total atomic mass of the conductive element, and a resistivity of the conductive element is between 2.5 and 30 micro-ohm-centimeter.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: July 22, 2014
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Belgacem Haba, Hiroaki Sato, Philip Damberg
  • Patent number: 8772946
    Abstract: A component can include a substrate and a conductive via extending within an opening in the substrate. The substrate can have first and second opposing surfaces. The opening can extend from the first surface towards the second surface and can have an inner wall extending away from the first surface. A dielectric material can be exposed at the inner wall. The conductive via can define a relief channel within the opening adjacent the first surface. The relief channel can have an edge within a first distance from the inner wall in a direction of a plane parallel to and within five microns below the first surface, the first distance being the lesser of one micron and five percent of a maximum width of the opening in the plane. The edge can extend along the inner wall to span at least five percent of a circumference of the inner wall.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: July 8, 2014
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Kishor V. Desai, Huailiang Wei, Craig Mitchell, Belgacem Haba
  • Publication number: 20140179099
    Abstract: Methods of forming a microelectronic assembly and the resulting structures and devices are disclosed herein. In one embodiment, a method of forming a microelectronic assembly includes removing material exposed at portions of a surface of a substrate to form a processed substrate having a plurality of thinned portions separated by integral supporting portions of the processed substrate having a thickness greater than a thickness of the thinned portions, at least some of the thinned portions including a plurality of electrically conductive interconnects extending in a direction of the thicknesses of the thinned portions and exposed at the surface; and removing the supporting portions of the substrate to sever the substrate into a plurality of individual thinned portions, at least some individual thinned portions including the interconnects.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Michael Newman, Charles G. Woychik, Terrence Caskey
  • Publication number: 20140167267
    Abstract: A method for making an interconnect element includes depositing a thermally conductive layer on an in-process unit. The in-process unit includes a semiconductor material layer defining a surface and edges surrounding the surface, a plurality of conductive elements, each conductive element having a first portion extending through the semiconductor material layer and a second portion extending from the surface of the semiconductor material layer. Dielectric coatings extend over at least the second portion of each conductive element. The thermally conductive layer is deposited on the in-process unit at a thickness of at least 10 microns so as to overlie a portion of the surface of the semiconductor material layer between the second portions of the conductive elements with the dielectric coatings positioned between the conductive elements and the thermally conductive layer.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: Cyprian Emeka Uzoh, Pezhman Monadgemi, Terrence Caskey, Fatima Lina Ayatollahi, Belgacem Haba, Charles G. Woychik, Michael Newman
  • Patent number: 8723049
    Abstract: A component can include a substrate having a first surface and a second surface remote therefrom, an opening extending in a direction between the first and second surfaces, and a conductive via extending within the opening. The substrate can have a CTE less than 10 ppm/° C. The conductive via can include a plurality of base particles each including a first region of a first metal substantially covered by a layer of a second metal different from the first metal. The base particles can be metallurgically joined together and the second metal layers of the particles can be at least partially diffused into the first regions. The conductive via can include voids interspersed between the joined base particles. The voids can occupy 10% or more of a volume of the conductive via.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 13, 2014
    Assignee: Tessera, Inc.
    Inventors: Charles G. Woychik, Kishor Desai, Ilyas Mohammed, Terrence Caskey
  • Publication number: 20140070423
    Abstract: A composite interposer can include a substrate element and a support element. The substrate element can have first and second opposite surfaces defining a thickness of 200 microns or less, and can have a plurality of contacts exposed at the first surface and electrically conductive structure extending through the thickness. The support element can have a body of at least one of dielectric or semiconductor material exposed at a second surface of the support element, openings extending through a thickness of the body, conductive vias extending within at least some of the openings in a direction of the thickness of the body, and terminals exposed at a first surface of the support element. The second surface of the support element can be united with the second surface of the substrate element. The terminals can be electrically connected with the contacts through the conductive vias and the electrically conductive structure.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: Charles G. Woychik, Cyprian Emeka Uzoh, Hiroaki Sato
  • Publication number: 20140054763
    Abstract: A method of attaching a microelectronic element to a substrate can include aligning the substrate with a microelectronic element, the microelectronic element having a plurality of spaced-apart electrically conductive bumps each including a bond metal, and reflowing the bumps. The bumps can be exposed at a front surface of the microelectronic element. The substrate can have a plurality of spaced-apart recesses extending from a first surface thereof. The recesses can each have at least a portion of one or more inner surfaces that are non-wettable by the bond metal of which the bumps are formed. The reflowing of the bumps can be performed so that at least some of the bond metal of each bump liquefies and flows at least partially into one of the recesses and solidifies therein such that the reflowed bond material in at least some of the recesses mechanically engages the substrate.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Applicant: Invensas Corporation
    Inventors: Charles G. Woychik, Se Young Yang, Pezhman Monadgemi, Terrence Caskey, Cyprian Emeka Uzoh
  • Publication number: 20140036454
    Abstract: A method for making an interposer includes forming a plurality of wire bonds bonded to one or more first surfaces of a first element. A dielectric encapsulation is formed contacting an edge surface of the wire bonds which separates adjacent wire bonds from one another. Further processing comprises removing at least portions of the first element, wherein the interposer has first and second opposite sides separated from one another by at least the encapsulation, and the interposer having first contacts and second contacts at the first and second opposite sides, respectively, for electrical connection with first and second components, respectively, the first contacts being electrically connected with the second contacts through the wire bonds.
    Type: Application
    Filed: March 12, 2013
    Publication date: February 6, 2014
    Applicant: INVENSAS CORPORATION
    Inventors: Terrence Caskey, Ilyas Mohammed, Cyprian Emeka Uzoh, Charles G. Woychik, Michael Newman, Pezhman Monadgemi, Reynaldo Co, Ellis Chau, Belgacem Haba
  • Publication number: 20130328186
    Abstract: A component can include a substrate and a conductive via extending within an opening in the substrate. The substrate can have first and second opposing surfaces. The opening can extend from the first surface towards the second surface and can have an inner wall extending away from the first surface. A dielectric material can be exposed at the inner wall. The conductive via can define a relief channel within the opening adjacent the first surface. The relief channel can have an edge within a first distance from the inner wall in a direction of a plane parallel to and within five microns below the first surface, the first distance being the lesser of one micron and five percent of a maximum width of the opening in the plane. The edge can extend along the inner wall to span at least five percent of a circumference of the inner wall.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: INVENSAS CORPORATION
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Kishor V. Desai, Huailiang Wei, Craig Mitchell, Belgacem Haba
  • Patent number: 8525309
    Abstract: A microelectronic unit can include a lead frame and a device chip. The lead frame can have a plurality of monolithic lead fingers extending in a plane of the lead frame. Each lead finger can have a fan-out portion and a chip connection portion extending in the lead frame plane. The fan-out portions can have first and second opposed surfaces and a first thickness in a first direction between the opposed surfaces. The chip connection portions can have a second thickness smaller than the first thickness. The chip connection portions can define a recess below the first surface. The device chip can have a plurality of at least one of passive devices or active devices. The device chip can have contacts thereon facing the chip connection portions and electrically coupled thereto. At least a portion of a thickness of the device chip can extend within the recess.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 3, 2013
    Assignee: Tessera, Inc.
    Inventors: Chok Chia, Qwai Low, Kishor Desai, Charles G. Woychik
  • Patent number: 8525312
    Abstract: A microelectronic assembly can include a microelectronic element and a lead frame having a first unit and a second unit overlying the first unit and assembled therewith. The first unit can have a first metal layer comprising a portion of the thickness of the lead frame and including terminals and first conductive elements extending away therefrom. The second unit can have a second metal layer comprising a portion of the thickness of the lead frame and including bond pads and second conductive elements extending away therefrom. The first and second units each can have an encapsulation supporting at least portions of the respective first and second conductive elements. At least some of the second conductive elements can overlie portions of corresponding ones of the first conductive elements and can be joined thereto. The microelectronic element can have contacts electrically connected with the bond pads of the lead frame.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 3, 2013
    Assignee: Tessera, Inc.
    Inventors: Qwai H. Low, Chok J. Chia, Kishor Desai, Charles G. Woychik, Huailiang Wei
  • Publication number: 20130118784
    Abstract: A component includes a support structure having first and second spaced-apart and parallel surfaces and a plurality of conductive elements extending in a direction between the first and second surfaces. Each conductive element contains an alloy of a wiring metal selected from the group consisting of copper, aluminum, nickel and chromium, and an additive selected from the group consisting of Gallium, Germanium, Indium, Selenium, Tin, Sulfur, Silver, Phosphorus, and Bismuth. The alloy has a composition that varies with distance in at least one direction across the conductive element. A concentration of the additive is less than or equal to 5% of the total atomic mass of the conductive element, and a resistivity of the conductive element is between 2.5 and 30 micro-ohm-centimeter.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Applicant: INVENSAS CORPORATION
    Inventors: Cyprian Uzoh, Charles G. Woychik, Terrence Caskey, Belgacem Haba, Philip Damberg