Patents by Inventor Che Liu

Che Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10692907
    Abstract: Disclosed are a CMOS image sensor encapsulation structure and a method for manufacturing the same, including the steps of: firstly, a transparent substrate material is fixed to a surface of a first insulating layer having a micro convex lens, a dummy wafer is fixed on a surface of the transparent substrate material, and then a wafer is thinned by grinding, and in this process, the transparent substrate material provides more mechanical support force for the wafer, therefore, the wafer can become thinner by grinding, thus the CMOS image sensor encapsulation structure is characterized by being formed in a thin shape. Besides, a second installation area has a protection glue layer which can prevent oxygen and moisture from entering internal elements and absorb scattered light.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 23, 2020
    Assignee: Pioneer Materials inc. Chengdu
    Inventors: Chen-Hsin Wu, Liu-Yuh Lin, Liang-Chih Weng, Tzu-Huan Cheng, Hao-Che Liu, Chien-Chun Liu, Chien-Yao Huang, Leon A. Chiu, Sau-Mou Wu, Ti-Hsien Tai, Yu-Hsiang Pan
  • Patent number: 10692908
    Abstract: A CMOS image sensor encapsulation structure and its manufacturing method, including: forming a blind hole in a combined layer formed by a first insulating layer and a wafer, a surface of the first insulating layer facing away from the wafer having a micro convex lens; forming a second insulating layer on a hole wall of the blind hole, then filling an electrically conductive material in the blind hole having the second insulating layer, and making a conductor in the combined layer in signal connection with the micro convex lens and an IC extend to a surface of the first insulating layer and electrically connecting the conductor to the electrically conductive material; fixing the transparent substrate material on a surface of the first insulating layer having the micro convex lens, forming a dummy wafer on a surface of the transparent substrate material, and then thinning the wafer by grinding.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 23, 2020
    Assignee: Pioneer Materials Inc. Chengdu
    Inventors: Chen-Hsin Wu, Ti-Hsien Tai, Yu-Hsiang Pan, Liu-Yuh Lin, Liang-Chih Weng, Tzu-Huan Cheng, Hao-Che Liu, Chien-Chun Liu, Chien-Yao Huang, Leon A Chiu, Sau-Mou Wu
  • Publication number: 20200149540
    Abstract: A magnetic bearing centrifugal compressor includes a magnetic bearing spindle having a thrust disk, front and rear axial bearings, an impeller and at least one labyrinth seal. The front and the rear axial bearings are disposed individually to opposing sides of the thrust disk. First and second clearances exist axially between the rear and front axial bearings, respectively, and the thrust disk. The impeller connects a front end of the magnetic bearing spindle. The labyrinth seal pairs the magnetic bearing spindle into an oblique arrangement with respect to the axial direction, and each the labyrinth seal is spaced from the magnetic bearing spindle or the impeller by a labyrinth-seal clearance. By controlling the thrust disk axially, a clearance ratio of the first clearance to the second clearance can be varied to adjust the labyrinth-seal clearance. In addition, a magnetic bearing centrifugal compressor controlling method is also provided.
    Type: Application
    Filed: March 6, 2019
    Publication date: May 14, 2020
    Inventors: JUN-JIE LIN, JENN-CHYI CHUNG, CHUNG-CHE LIU, KUO-SHU HUNG
  • Patent number: 10647091
    Abstract: The present invention discloses a planar glass sealing structure and a manufacturing method thereof, the planar glass sealing structure comprises, in a top-down order: a first glass substrate, an insulating layer, a metal sealing frame and a second glass substrate. The insulating layer is formed as a frame shape, and disposed on a peripheral margin of the first glass substrate; the metal sealing frame is formed by heating to melt a metal solder layer between the first and second glass substrate, and it can keep a fixed gap between the first and second glass substrate, so that an inner space thereof is kept in an excellent sealed condition. The present invention can ensure the sealing structure of two correspondingly assembled glass substrates, so that the inner space thereof is insulated from moisture and oxygen, so as to increase the performance and quality of the device.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: May 12, 2020
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Yawei Liu, Tai-pi Wu, Chih-Che Liu
  • Publication number: 20200083185
    Abstract: Methods of forming connectors and packaged semiconductor devices are disclosed. In some embodiments, a connector is formed by forming a first photoresist layer over an interconnect structure, and patterning the first photoresist layer. The patterned first photoresist layer is used to form a first opening in an interconnect structure. The patterned first photoresist is removed, and a second photoresist layer is formed over the interconnect structure and in the first opening. The second photoresist layer is patterned to form a second opening over the interconnect structure in the first opening. The second opening is narrower than the first opening. At least one metal layer is plated through the patterned second photoresist layer to form the connector.
    Type: Application
    Filed: November 11, 2019
    Publication date: March 12, 2020
    Inventors: Jung Wei Cheng, Hai-Ming Chen, Chien-Hsun Lee, Hao-Cheng Hou, Hung-Jen Lin, Chun-Chih Chuang, Ming-Che Liu, Tsung-Ding Wang
  • Patent number: 10522486
    Abstract: Methods of forming connectors and packaged semiconductor devices are disclosed. In some embodiments, a connector is formed by forming a first photoresist layer over an interconnect structure, and patterning the first photoresist layer. The patterned first photoresist layer is used to form a first opening in an interconnect structure. The patterned first photoresist is removed, and a second photoresist layer is formed over the interconnect structure and in the first opening. The second photoresist layer is patterned to form a second opening over the interconnect structure in the first opening. The second opening is narrower than the first opening. At least one metal layer is plated through the patterned second photoresist layer to form the connector.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Hai-Ming Chen, Chien-Hsun Lee, Hao-Cheng Hou, Hung-Jen Lin, Chun-Chih Chuang, Ming-Che Liu, Tsung-Ding Wang
  • Publication number: 20190199942
    Abstract: A living organism image monitoring system is provided, relating to the technical field of medical equipment. The living organism image monitoring system comprises a display module, a processor and a CIGS chip, the CIGS chip, the processor and the display module being electrically connected, the CIGS chip being used for detecting a near infrared light signal of a living organism and generating a current signal after having detected the near infrared light signal, the processor being used for generating a first pulse signal according to the current signal, and the display module being used for displaying an image according to the first pulse signal. The living organism image monitoring system provided by the present disclosure has the advantages of being capable of synchronously transmitting the images of a living organism to the display module for display and enabling the images to be clearer.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 27, 2019
    Inventors: Chien-Chun LIU, Liu-Yuh LIN, Liang-Chih WENG, Tzu-Huan CHENG, Chen-Hsin WU, Hao-Che LIU, Chien-Yao HUANG, Leon A CHIU, Sau-Mou WU, Ti-Hsien TAI, Yu-Hsiang PAN
  • Publication number: 20190200002
    Abstract: A 3D depth image acquiring method and apparatus, and an image acquisition device are provided. The method is applied to an image acquisition device comprising a VIS-NIR picture sensor and an infrared structured light projection component. The VIS-NIR picture sensor comprises a plurality of dot matrix units each having a blue light photosensitive component, a green light photosensitive component, a red light photosensitive component and an NIR photosensitive component distributed thereon. The method comprises: controlling the blue light photosensitive component, the green light photosensitive component, the red light photosensitive component, the NIR photosensitive component and the infrared structured light projection component to operate, to obtain an optimum NIR image and an optimum VIS image; and processing the optimum VIS image and a depth image which is obtained by performing calculation on the optimum NIR image using a 3D depth mode, to obtain a 3D depth image.
    Type: Application
    Filed: November 27, 2018
    Publication date: June 27, 2019
    Inventors: Hao-Che Liu, Liu-Yuh Lin, Liang-Chih Weng, Tzu-Huan Cheng, Chen-Hsin Wu, Chien-Chun Liu, Chien-Yao Huang, Leon A. Chiu, Sau-Mou Wu, Ti-Hsien Tai, Yu-Hsiang Pan
  • Publication number: 20190198544
    Abstract: Disclosed are a CMOS image sensor encapsulation structure and a method for manufacturing the same, including the steps of: firstly, a transparent substrate material is fixed to a surface of a first insulating layer having a micro convex lens, a dummy wafer is fixed on a surface of the transparent substrate material, and then a wafer is thinned by grinding, and in this process, the transparent substrate material provides more mechanical support force for the wafer, therefore, the wafer can become thinner by grinding, thus the CMOS image sensor encapsulation structure is characterized by being formed in a thin shape. Besides, a second installation area has a protection glue layer which can prevent oxygen and moisture from entering internal elements and absorb scattered light.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 27, 2019
    Applicant: Pioneer Materials Inc. Chengdu
    Inventors: Chen-Hsin WU, Liu-Yuh LIN, Liang-Chih WENG, Tzu-Huan CHENG, Hao-Che LIU, Chien-Chun LIU, Chien-Yao HUANG, Leon A. CHIU, Sau-Mou WU, Ti-Hsien TAI, Yu-Hsiang PAN
  • Publication number: 20190198545
    Abstract: A CMOS image sensor encapsulation structure and its manufacturing method, including : forming a blind hole in a combined layer formed by a first insulating layer and a wafer, a surface of the first insulating layer facing away from the wafer having a micro convex lens; forming a second insulating layer on a hole wall of the blind hole, then filling an electrically conductive material in the blind hole having the second insulating layer, and making a conductor in the combined layer in signal connection with the micro convex lens and an IC extend to a surface of the first insulating layer and electrically connecting the conductor to the electrically conductive material; fixing the transparent substrate material on a surface of the first insulating layer having the micro convex lens, forming a dummy wafer on a surface of the transparent substrate material, and then thinning the wafer by grinding.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 27, 2019
    Applicant: Pioneer Materials Inc. Chengdu
    Inventors: Chen-Hsin WU, Liu-Yuh LIN, Liang-Chih WENG, Tzu-Huan CHENG, Hao-Che LIU, Chien-Chun LIU, Chien-Yao HUANG, Leon A. CHIU, Sau-Mou WU, Ti-Hsien TAI, Yu-Hsiang PAN
  • Patent number: 10330115
    Abstract: An adjusting mechanism, adaptive to a main body of a centrifugal compressor, comprises a diffuser channel width adjusting assembly and a gas bypass assembly. The diffuser channel width adjusting assembly comprises a width adjusting annular plate and a first valve stem. The width adjusting annular plate is movably disposed in a diffuser channel of the main body. The first valve stem is connected to the width adjusting annular plate, and configured for driving the width adjusting annular plate to move to adjust the width of the diffuser channel. The gas bypass assembly comprises a gas bypass valve and a second valve stem. The gas bypass valve is movably disposed in a gas bypass passage of the main body. The second valve stem is connected to the gas bypass valve, and configured for driving the gas bypass valve to move to adjust the opening of the gas bypass port.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: June 25, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jenn-Chyi Chung, Chung-Che Liu
  • Patent number: 10208758
    Abstract: An internal hot gas bypass device coupled with inlet guide vane for centrifugal compressor includes an inlet guide vane assembly, a driving motor assembly and a gas bypass valve assembly. The inlet guide vane assembly further includes a master vane, a plurality of slave vanes, a vane-front fixing ring, a vane-rear fixing ring, a vane-driving ring, a connecting pipe and a vane-opening indicating disk. The driving motor assembly further includes a motor, a driving unit and a motor fixing base. The gas bypass valve assembly further includes a valve, an external fixing-and-guiding ring, an internal fixing-and-guiding ring, a driven element, a spring, a sealing ring, a valve stud and a valve base. The driving motor assembly is connected with the driving unit and the master vane of the inlet guide vane assembly via a connecting rod, and is further connected with the slave vanes of the gas bypass valve assembly.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: February 19, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jenn-Chyi Chung, Kun-Yi Liang, Kuo-Shu Hung, Chung-Che Liu, Hsu-Cheng Chiang
  • Publication number: 20190021808
    Abstract: Disclosed is a minimally invasive instrument with instant force feedback function, including a minimally invasive device, a sensing device, a computing device, and a warning device. The minimally invasive device may have an invasive portion, which may enter the human body to perform surgical operations. The sensing device is provided on the invasive portion of the minimally invasive device and may include a flexible conductive film, a plurality of bionic films and a plurality of liquid beads. The plurality of bionic films may be provided on a flexible conductive film. Each of the plurality of liquid beads may be covered by each of the plurality of bionic films. The computing device may be electrically connected to the flexible conductive film. The warning device may receive a warning signal and generate a warning message.
    Type: Application
    Filed: May 23, 2018
    Publication date: January 24, 2019
    Inventors: Shih-Chi Chan, Kai-Che Liu, Shih-Wei Huang, Hsien-Yeh Chen, Tien-Li Chang
  • Patent number: 10139607
    Abstract: A lightweight 3D stereoscopic surgical microscope has a body, a robot set, an image set, and an operating set. The body has a wheel seat, a housing mounted on the wheel seat, and a host computer mounted in the housing. The robot set is connected to the body and has a base mounted on the housing, a transversal lever mounted on the base, a lifting arm connected to the transversal lever, and a rotating arm connected to the lifting arm. The image set is connected to the robot set and has an outer casing connected to the rotating arm, at least one objective lens mounted in the outer casing, a main display screen mounted on the outer casing, an auxiliary display screen mounted beside the body. The operating set is connected to the robot set, is connected to the body and the image set and has two operating bars.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: November 27, 2018
    Assignee: Visionnaire Medtech Co., Ltd.
    Inventors: Ming-Chou Ku, Kai-Che Liu, Kun-Wei Lin, Ivan Ku, Shih-Chi Chan, Tong-Wen Wang, Tsuan-Kao Lin, I-Chun Lee
  • Publication number: 20180263698
    Abstract: Disclosed is an image registration and an augmented reality system and an augmented reality method thereof which is suitable for solving the problem of spatial localization of the temporomandibular joint (TMJ) in arthroscopic surgery. The system comprises a three-dimensional scanning model building device, a stereoscopic image photographing device, a projection device and an arithmetic unit. The three-dimensional scanning model was constructed by preoperative or intraoperative imaging of the patient, and the surface three-dimensional model constructed by the stereoscopic image photographing device was spatially aligned to remove the surface (skin layer) of the three-dimensional image to display the TMJ image. Through the calibration of the stereoscopic image photographing device and the projection device, accurate, three-dimensional TMJ image location information is projected onto the patient's body to achieve the purpose.
    Type: Application
    Filed: February 13, 2018
    Publication date: September 20, 2018
    Inventors: YEN-YU WANG, Kai-Che Liu, Kumar Atul, Li-Hsun Chen
  • Publication number: 20180239123
    Abstract: A 3D stereo image display device for a surgical microscope is provided. The surgical microscope comprises a main body, a mechanical arm, and an operation assembly. The 3D stereo image display device has a shell, at least one objective lens, an image processing circuit and a screen. The at least one objective lens is mounted in the shell. The image processing circuit is mounted in the shell and is electrically connected to the at least one objective lens. The host computer has an image processor for converting images captured by the at least one objective lens into 3D stereo images. The screen is mounted on an outer surface of the shell and is electrically connected to the image processing circuit for displaying the 3D stereo images. Thus, the 3D stereo image display device is provided to prevent tiredness and improve applicability and convenience.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Ming-Chou Ku, Kai-Che Liu, Kun-Wei Lin, Ivan Ku, Shih-Chi Chan, Tong-Wen Wang, I-Chun Lee, Siang-Cyun Wang
  • Patent number: 10047466
    Abstract: A method for fabricating a bandage comprises the following steps: preparing multiple complex yarns each comprising chitosan fibers and rayon fibers; (b) weaving solely the multiple complex yarns to form a preformed bandage; (c) immersing the preformed bandage in an acid alcohol, and then washing the preformed bandage by alcohol to obtain an alcohol-washed bandage; and, (d) heating the alcohol-washed bandage to obtain the bandage. The bandage related to the method is comprised of complex yarns, wherein each of the complex yarns is composed of chitosan fibers and rayon fibers. By means of immersing the preformed bandage into an acid alcohol, the bandage thus obtained has enhanced tensile strength, decreased dissolution rate and reduced hemolytic dose.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: August 14, 2018
    Inventors: Teeming Tsao, Juin-Hong Cherng, Cheng-Che Liu, Shou-Hung Tang
  • Patent number: 10026671
    Abstract: An embodiment device package includes first die and one or more redistribution layers (RDLs) electrically connected to the first die. The one or more RDLs extend laterally past edges of the first die. The device package further includes one or more second dies bonded to a first surface of the one or more RDLs and a connector element on the first surface of the one or more RDLs. The connector element has a vertical dimension greater than the one or more second dies. A package substrate is bonded to the one or more RDLs using the connector element, wherein the one or more second dies is disposed between the first die and the package substrate.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: July 17, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Mirng-Ji Lii, Chien-Hsun Lee, Tsung-Ding Wang, Jung Wei Cheng, Ming-Che Liu, Hao-Cheng Hou, Hung-Jen Lin
  • Patent number: 10025083
    Abstract: An adjustable dual-lens device for 3D stereoscopic surgical microscopes has an outer casing, an image set, and an adjusting set. The image set is mounted in the outer casing and has two lenses. The lenses are pivotally mounted in the outer casing at a spaced interval. The adjusting set is mounted in the outer casing and has two adjusting units. Each adjusting unit has a driving motor, a cam, and a limiting element. The driving motor is mounted in the outer casing adjacent to one of the lenses and has a driving shaft. The cam is eccentrically mounted around the driving shaft and is pressed against the lens that is adjacent to the driving motor. The limiting element is connected to the outer casing and the corresponding lens to enable the corresponding lens to press against the cam.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 17, 2018
    Assignee: Visionnaire Medtech Co., Ltd.
    Inventors: Ming-Chou Ku, Kai-Che Liu, Kun-Wei Lin, Ivan Ku, Shih-Chi Chan, Tong-Wen Wang, I-Chun Lee
  • Publication number: 20180163749
    Abstract: An adjusting mechanism, adaptive to a main body of a centrifugal compressor, comprises a diffuser channel width adjusting assembly and a gas bypass assembly. The diffuser channel width adjusting assembly comprises a width adjusting annular plate and a first valve stem. The width adjusting annular plate is movably disposed in a diffuser channel of the main body. The first valve stem is connected to the width adjusting annular plate, and configured for driving the width adjusting annular plate to move to adjust the width of the diffuser channel. The gas bypass assembly comprises a gas bypass valve and a second valve stem. The gas bypass valve is movably disposed in a gas bypass passage of the main body. The second valve stem is connected to the gas bypass valve, and configured for driving the gas bypass valve to move to adjust the opening of the gas bypass port.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 14, 2018
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jenn-Chyi CHUNG, Chung-Che LIU