Patents by Inventor Chen Ming

Chen Ming has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162317
    Abstract: A non-volatile memory device includes a memory cell including a substrate, a select gate, a control gate, a planar floating gate, a coupling dielectric layer, an erase gate dielectric layer, and an erase gate. The select gate and the control gate are disposed on the substrate and laterally spaced apart from each other, and the control gate includes a non-vertical surface. The planar floating gate includes a lateral tip laterally spaced apart from the control gate. The coupling dielectric layer includes a first thickness (T1). The erase gate dielectric layer covers the non-vertical surface of the control gate and the lateral tip of the planar floating gate, and includes a second thickness (T2). The erase gate covers the erase gate dielectric layer and the lateral tip of the planar floating gate. The first thickness and the second thickness satisfy the following relation: (T2)<(T1)<2(T2).
    Type: Application
    Filed: October 20, 2023
    Publication date: May 16, 2024
    Inventors: Der-Tsyr Fan, I-Hsin Huang, Tzung-Wen Cheng, Yu-Ming Cheng, Chen-Ming Tsai
  • Publication number: 20240160913
    Abstract: In various examples, learning responsibility allocations for machine interactions is described herein. Systems and methods are disclosed that train a neural network(s) to generate outputs indicating estimated levels of responsibilities associated with interactions between vehicles or machines and other objects (e.g., other vehicles, machines, pedestrians, animals, etc.). In some examples, the neural network(s) is trained using real-world data, such as data representing scenes depicting actual interactions between vehicles and objects and/or parameters (e.g., velocities, positions, directions, etc.) associated with the interactions. Then, in practice, a vehicle (e.g., an autonomous vehicle, a semi-autonomous vehicle, etc.) may use the neural network(s) to generate an output indicating a proposed or estimated level of responsibility associated with an interaction between the vehicle and an object. The vehicle may then use the output to determine one or more controls for the vehicle to use when navigating.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 16, 2024
    Inventors: Ryan Cosner, Yuxiao Chen, Karen Yan Ming Leung, Marco Pavone
  • Publication number: 20240162109
    Abstract: In an embodiment, a package includes an integrated circuit device attached to a substrate; an encapsulant disposed over the substrate and laterally around the integrated circuit device, wherein a top surface of the encapsulant is coplanar with the top surface of the integrated circuit device; and a heat dissipation structure disposed over the integrated circuit device and the encapsulant, wherein the heat dissipation structure includes a spreading layer disposed over the encapsulant and the integrated circuit device, wherein the spreading layer includes a plurality of islands, wherein at least a portion of the islands are arranged as lines extending in a first direction in a plan view; a plurality of pillars disposed over the islands of the spreading layer; and nanostructures disposed over the pillars.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 16, 2024
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Kuo-Chung Yee, Yu-Jen Lien, Ke-Han Shen, Wei-Kong Sheng, Chung-Shi Liu, Szu-Wei Lu, Tsung-Fu Tsai, Chung-Ju Lee, Chih-Ming Ke
  • Publication number: 20240153901
    Abstract: A first and second semiconductor device are bonded together using a bonding contact pad embedded within a bonding dielectric layer of the first semiconductor device and at least one bonding via embedded within a bonding dielectric layer of the second semiconductor device. The bonding contact pad extends a first dimension in a first direction perpendicular to the major surface of the first semiconductor device and a second dimension in a second direction parallel to the plane of the first semiconductor wafer, the second dimension being at least twice the first dimension. The bonding via extends a third dimension in the first direction and a fourth dimension in the second direction, the third dimension being at least twice the first dimension. The bonding contact pad and bonding via may be at least partially embedded in respective bonding dielectric layers in respective topmost dielectric layers of respective stacked interconnect layers.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 9, 2024
    Inventors: Yu-Hung Lin, Han-Jong Chia, Wei-Ming Wang, Kuo-Chung Yee, Chen Chen, Shih-Peng Tai
  • Publication number: 20240153558
    Abstract: A memory device includes a main array comprising main memory cells; a redundancy array comprising redundancy memory cells; and write circuitry configured to perform a first programming operation on a main memory cell, to detect whether a current of the main memory cell exceeds a predefined current threshold during the first programming operation, and to disable a second programming operation for a redundancy memory cell if the current of the main memory cell exceeds the predefined current threshold during the first programming operation.
    Type: Application
    Filed: January 12, 2024
    Publication date: May 9, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Der Chih, Chung-Cheng Chou, Chun-Yun Wu, Chen-Ming Hung
  • Patent number: 11972984
    Abstract: A semiconductor device includes a fin-shaped structure on a substrate, a gate structure on the fin-shaped structure and an interlayer dielectric (ILD) layer around the gate structure, and a single diffusion break (SDB) structure in the ILD layer and the fin-shaped structure. Preferably, the SDB structure includes a bottom portion and a top portion on the bottom portion, in which the top portion and the bottom portion include different widths.
    Type: Grant
    Filed: December 26, 2022
    Date of Patent: April 30, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Ling Lin, Wen-An Liang, Chen-Ming Huang
  • Publication number: 20240127758
    Abstract: A display may include an array of pixels that receive control signals from a chain of gate drivers. The pixels can be formed using semiconducting oxide transistors, whereas the gate drivers can be formed using silicon transistor. Each gate driver may include a shift register subcircuit and an output buffer subcircuit. The shift register subcircuit may include a first set of transistors at least partially controlled by one or more shift register clock signals. The output buffer subcircuit may include a second set of transistors at least partially controlled by one or more output buffer clock signals. The output buffer clock signals can toggle independently from the shift register clock signals. Operated in this way, the shift register clock signals can have pulse widths optimized for stability while the output buffer clock signals can have pulse widths optimized for speed.
    Type: Application
    Filed: May 23, 2023
    Publication date: April 18, 2024
    Inventors: Shinya Ono, Chin-Wei Lin, Chen-Ming Chen, Hassan Edrees
  • Patent number: 11953740
    Abstract: A package structure including a photonic, an electronic die, an encapsulant and a waveguide is provided. The photonic die includes an optical coupler. The electronic die is electrically coupled to the photonic die. The encapsulant laterally encapsulates the photonic die and the electronic die. The waveguide is disposed over the encapsulant and includes an upper surface facing away from the encapsulant. The waveguide includes a first end portion and a second end portion, the first end portion is optically coupled to the optical coupler, and the second end portion has a groove on the upper surface.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11957064
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a spacer adjacent to the MTJ, a liner adjacent to the spacer, and a first metal interconnection on the MTJ. Preferably, the first metal interconnection includes protrusions adjacent to two sides of the MTJ and a bottom surface of the protrusions contact the liner directly.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Patent number: 11954937
    Abstract: A fingerprint sensing system is configured to receive an illumination beam which is reflected by a finger and then transmitted to the fingerprint sensing system to generate a fingerprint image. The fingerprint sensing system includes a plurality of microlenses, a sensor, a first light filter layer, and a second light filter layer. The microlenses are arranged in an array. The sensor has a plurality of sensing pixels arranged in an array. The first light filter layer is disposed between the microlenses and the sensor and has a plurality of first openings. The second light filter layer is disposed between the first light filter layer and the sensor and has a plurality of second openings. The illumination beam passes through the first openings or the second openings, so that the sensor receives the illumination beam.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 9, 2024
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventor: Chen-Ming Huang
  • Patent number: 11949030
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor with a passivation layer for dark current reduction. A device layer overlies a substrate. Further, a cap layer overlies the device layer. The cap and device layers and the substrate are semiconductor materials, and the device layer has a smaller bandgap than the cap layer and the substrate. For example, the cap layer and the substrate may be silicon, whereas the device layer may be or comprise germanium. A photodetector is in the device and cap layers, and the passivation layer overlies the cap layer. The passivation layer comprises a high k dielectric material and induces formation of a dipole moment along a top surface of the cap layer.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hao Chiang, Eugene I-Chun Chen, Chih-Ming Chen
  • Patent number: 11947173
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11943877
    Abstract: A circuit board structure includes a circuit substrate having opposing first and second sides, a redistribution structure disposed at the first side, and a dielectric structure disposed at the second side. The circuit substrate includes a first circuit layer disposed at the first side and a second circuit layer disposed at the second side. The redistribution structure is electrically coupled to the circuit substrate and includes a first leveling dielectric layer covering the first circuit layer, a first thin-film dielectric layer disposed on the first leveling dielectric layer and having a material different from the first leveling dielectric layer, and a first redistributive layer disposed on the first thin-film dielectric layer and penetrating through the first thin-film dielectric layer and the first leveling dielectric layer to be in contact with the first circuit layer. The dielectric structure includes a second leveling dielectric layer disposed below the second circuit layer.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: March 26, 2024
    Assignee: Unimicron Technology Corp.
    Inventors: Wen-Yu Lin, Kai-Ming Yang, Chen-Hao Lin, Pu-Ju Lin, Cheng-Ta Ko, Chin-Sheng Wang, Guang-Hwa Ma, Tzyy-Jang Tseng
  • Publication number: 20240096999
    Abstract: A device includes a gate stack; a gate spacer on a sidewall of the gate stack; a source/drain region adjacent the gate stack; a silicide; and a source/drain contact electrically connected to the source/drain region through the silicide. The silicide includes a conformal first portion in the source/drain region, the conformal first portion comprising a metal and silicon; and a conformal second portion over the conformal first portion, the conformal second portion further disposed on a sidewall of the gate spacer, the conformal second portion comprising the metal, silicon, and nitrogen.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Kai-Di Tzeng, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Publication number: 20240097598
    Abstract: A motor drive unit for driving a motor of a motorized window treatment may comprise software-based and hardware-based implementations of a process for detecting and resolving a stall condition in the motor, where the hardware-based implementation is configured to reduce power delivered to the motor if the software-based implementation has not first reduced the power to the motor. A control circuit may detect a stall condition of the motor, and reduce the power delivered to the motor after a first period of time from first detecting the stall condition. The motor drive unit may comprise a stall prevention circuit configured to reduce the power delivered to the motor after a second period of time (e.g., longer than the first period of time) from determining that a rotational sensing circuit is not generating a sensor signal while the control circuit is generating a drive signal to rotate the motor.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 21, 2024
    Applicant: Lutron Technology Company LLC
    Inventors: Donald F. Hausman, JR., Chen Ming Wu
  • Publication number: 20240096985
    Abstract: Methods and devices including an air gap adjacent a contact element extending to a source/drain feature of a device are described. Some embodiments of the method include depositing a dummy layer, which is subsequently removed to form the air gap. The dummy layer and subsequent air gap may be formed after a SAC dielectric layer such as silicon nitride is formed over an adjacent metal gate structure.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
  • Publication number: 20240096830
    Abstract: A method includes forming a first sealing layer at a first edge region of a first wafer; and bonding the first wafer to a second wafer to form a wafer stack. At a time after the bonding, the first sealing layer is between the first edge region of the first wafer and a second edge region of the second wafer, with the first edge region and the second edge region comprising bevels. An edge trimming process is then performed on the wafer stack. After the edge trimming process, the second edge region of the second wafer is at least partially removed, and a portion of the first sealing layer is left as a part of the wafer stack. An interconnect structure is formed as a part of the second wafer. The interconnect structure includes redistribution lines electrically connected to integrated circuit devices in the second wafer.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 21, 2024
    Inventors: Yu-Yi Huang, Yu-Hung Lin, Wei-Ming Wang, Chen Chen, Shih-Peng Tai, Kuo-Chung Yee
  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Publication number: 20240097035
    Abstract: Epitaxial source/drain structures for enhancing performance of multigate devices, such as fin-like field-effect transistors (FETs) or gate-all-around (GAA) FETs, and methods of fabricating the epitaxial source/drain structures, are disclosed herein. An exemplary device includes a dielectric substrate. The device further includes a channel layer, a gate disposed over the channel layer, and an epitaxial source/drain structure disposed adjacent to the channel layer. The channel layer, the gate, and the epitaxial source/drain structure are disposed over the dielectric substrate. The epitaxial source/drain structure includes an inner portion having a first dopant concentration and an outer portion having a second dopant concentration that is less than the first dopant concentration. The inner portion physically contacts the dielectric substrate, and the outer portion is disposed between the inner portion and the channel layer. In some embodiments, the outer portion physically contacts the dielectric substrate.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Chen-Ming Lee, I-Wen Wu, Po-Yu Huang, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: D1022588
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: April 16, 2024
    Assignee: Meyer Intellectual Properties Limited
    Inventors: Edison Wong, Chen Howe Chong, Josefa Ming Yui Cheang, Jacquelyn Maitram Truong, Man Ting Patrick Tsang, Pimpaphak Chusiriwat, Warathaya Chinaprapath