Patents by Inventor Cheng-Hung Shih

Cheng-Hung Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140159234
    Abstract: A semiconductor manufacturing process includes the following steps of providing a silicon substrate having at least one connection pad and a protection layer, forming a first seed layer having at least one first section and at least one second section, forming a first photoresist layer, forming a first buffer layer having a coupling portion and a cladding portion, removing the first photoresist layer, removing the second section of the first seed layer to form a first under bump metallurgy layer, forming a support layer on the protection layer and the first buffer layer, the first under bump metallurgy layer has a first ring wall, the first buffer layer has a second ring wall, wherein the first ring wall, the second ring wall and the cladding portion are cladded by the support layer, and forming a connection portion and covering the coupling portion with the connection portion.
    Type: Application
    Filed: January 17, 2013
    Publication date: June 12, 2014
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Yung-Wei Hsieh, Kai-Yi Wang
  • Publication number: 20140110664
    Abstract: An III-nitride quantum well structure includes a GaN base, an InGaN layer and an InGaN covering layer. The GaN base includes a GaN buffering layer, a GaN post extending from the GaN buffering layer, and a GaN pyramid gradually expanding from the GaN post to form a mounting surface. The InGaN layer includes first and second coupling faces. The first coupling face is coupled with the mounting surface. The GaN covering layer includes first and second coupling faces. The first coupling face of the GaN covering layer is coupled with the second coupling face of the InGaN layer. A method for manufacturing the III-nitride quantum well structure and a light-emitting unit having a plurality of III-nitride quantum well structures are also proposed.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 24, 2014
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: I-Kai LO, Yu-Chi HSU, Cheng-Hung SHIH, Wen-Yuan PANG, Ming-Chi CHOU
  • Publication number: 20140098503
    Abstract: An electronic device includes a casing, a circuit board, an electronic component and a plurality of conductive elements. The circuit board is disposed in the casing. The electronic component is disposed on the circuit board and has a shielding surface and an electronic components body, in which the shielding surface and the casing together form a common casing surface, and there is a slit between the shielding surface and the casing. The conductive elements are disposed on the circuit board and grounded, in which the center position of each of the conductive elements and the edge of the shielding surface overlap each other, and the distance between the edge of the shielding surface and the conductive element is less than the distance between the edge of the shielding surface and the electronic component main body to evacuate static electricity around the electronic component.
    Type: Application
    Filed: November 22, 2012
    Publication date: April 10, 2014
    Inventors: Mao-Sheng Huang, Cheng-Hung Shih
  • Patent number: 8692390
    Abstract: A pyramid bump structure for electrically coupling to a bond pad on a carrier comprises a conductive block disposed at the bond pad and an oblique pyramid insulation layer covered at one side of the conductive block. The oblique pyramid insulation layer comprises a bottom portion and a top portion, and outer diameter of the oblique pyramid insulation layer is tapered from the bottom portion to the top portion. When the carrier is connected with a substrate and an anisotropic conductive film disposed at the substrate, the pyramid bump structure may rapidly embed into the anisotropic conductive film to raise the flow rate of the anisotropic conductive film. Further, a short phenomenon between adjacent bumps can be avoided to raise the yield rate of package process.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 8, 2014
    Assignee: Chipbond Technology Corporation
    Inventors: Chih-Hung Wu, Lung-Hua Ho, Chih-Ming Kuo, Cheng-Hung Shih, Yie-Chuan Chiu
  • Patent number: 8581239
    Abstract: A semiconductor structure comprises a carrier, a plurality of under bump metallurgy layers, a plurality of copper containing bumps and an organic barrier layer, wherein the carrier comprises a protective layer and a plurality of conductive pads, mentioned protective layer comprises a plurality of openings, the conductive pads exposed by the openings, mentioned under bump metallurgy layers being formed on the conductive pads, mentioned copper containing bumps being formed on the under bump metallurgy layers, each of the copper containing bumps comprises a top surface and a ring surface in connection with the top surface, mentioned organic barrier layer having a first coverage portion, and mentioned first coverage portion covers the top surface and the ring surface of each of the copper containing bumps.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: November 12, 2013
    Assignee: Chipbond Technology Corporation
    Inventors: Cheng-Hung Shih, Shu-Chen Lin, Yung-Wei Hsieh, Jun-Yu Yeh
  • Publication number: 20130256882
    Abstract: A method for manufacturing fine-pitch bumps comprises providing a silicon substrate; forming a titanium-containing metal layer having a plurality of first zones and a plurality of second zones on the silicon substrate; forming a photoresist layer on the titanium-containing metal layer; patterning the photoresist layer; forming a plurality of copper bumps having a plurality of first top surfaces and a plurality of first ring surfaces; heating the photoresist layer to form a plurality of body portions and removable portions; etching the photoresist layer; forming a plurality of bump protection layers on the titanium-containing metal layer, the first top surface and the first ring surface, each of the bump protection layers comprises a bump coverage portion; plating a plurality of gold layers at the bump coverage portion; eventually, removing the second zones to enable each of the first zones to form an under bump metallurgy layer.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Inventors: Cheng-Hung Shih, Yung-Wei Hsieh, Shu-Chen Lin, Cheng-Fan Lin, Hua-An Dai
  • Publication number: 20130252374
    Abstract: A semiconductor packaging method includes providing a substrate having a plurality of pads, each of the pads comprises a first coupling surface having a plurality of first conductive contact areas and a plurality of first non-conductive contact areas; forming a conductible gel with anti-dissociation function on the substrate, said conductible gel includes a plurality of conductive particles and a plurality of anti-dissociation substances; mounting a chip on the substrate, said chip comprises a plurality of copper-containing bumps, each of the copper-containing bumps comprises a ring surface and a second coupling surface having a plurality of second conductive contact areas and a plurality of second non-conductive contact areas, wherein the conductive particles are electrically connected with the first conductive contact areas and the second conductive contact areas, said anti-dissociation substances are in contact with the second non-conductive contact area, and the ring surfaces are covered with the anti-dis
    Type: Application
    Filed: May 14, 2013
    Publication date: September 26, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Shu-Chen Lin, Cheng-Fan Lin, Yung-Wei Hsieh, Bo-Shiun Jiang
  • Publication number: 20130249089
    Abstract: A method for manufacturing fine-pitch bumps comprises the steps of providing a silicon substrate; forming a titanium-containing metal layer on the silicon substrate, wherein the titanium-containing metal layer comprises a plurality of first zones and a plurality of second zones; forming a photoresist layer on the titanium-containing metal layer; patterning the photoresist layer to form a plurality of opening slots; forming a plurality of copper bumps at the opening slots, wherein each of the copper bumps comprises a first top surface and a ring surface; heating the photoresist layer to form a plurality of body portions and a plurality of removable portions; etching the photoresist layer; and removing the second zones to enable each of the first zones to form an under bump metallurgy layer having a bearing portion and an extending portion.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 26, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Yung-Wei Hsieh, Shu-Chen Lin, Cheng-Fan Lin, Hua-An Dai
  • Publication number: 20130249081
    Abstract: A method for manufacturing fine-pitch bumps comprises providing a silicon substrate; forming a titanium-containing metal layer having a plurality of first zones and a plurality of second zones on the silicon substrate; forming a photoresist layer on the titanium-containing metal layer; patterning the photoresist layer; forming a plurality of copper bumps having a plurality of first top surfaces and a plurality of first ring surfaces; heating the photoresist layer to form a plurality of body portions and removable portions; etching the photoresist layer; forming a plurality of bump protection layers on the titanium-containing metal layer, the first top surface and the first ring surface, each of the bump protection layers comprises a bump coverage portion; plating a plurality of gold layers at the bump coverage portion; eventually, removing the second zones to enable each of the first zones to form an under bump metallurgy layer.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Yung-Wei Hsieh, Shu-Chen Lin, Cheng-Fan Lin, Hua-An Dai
  • Patent number: 8530344
    Abstract: A method for manufacturing fine-pitch bumps comprises providing a silicon substrate; forming a titanium-containing metal layer having a plurality of first zones and a plurality of second zones on the silicon substrate; forming a photoresist layer on the titanium-containing metal layer; patterning the photoresist layer; forming a plurality of copper bumps having a plurality of first top surfaces and a plurality of first ring surfaces; heating the photoresist layer to form a plurality of body portions and removable portions; etching the photoresist layer; forming a plurality of bump protection layers on the titanium-containing metal layer, the first top surface and the first ring surface, each of the bump protection layers comprises a bump coverage portion; plating a plurality of gold layers at the bump coverage portion; eventually, removing the second zones to enable each of the first zones to form an under bump metallurgy layer.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 10, 2013
    Assignee: Chipbond Technology Corporation
    Inventors: Cheng-Hung Shih, Yung-Wei Hsieh, Shu-Chen Lin, Cheng-Fan Lin, Hua-An Dai
  • Publication number: 20130214407
    Abstract: A semiconductor packaging method includes providing a substrate having a plurality of pads, each of the pads comprises a first coupling surface having a plurality of first conductive contact areas and a plurality of first non-conductive contact areas; forming a conductible gel with anti-dissociation function on the substrate, said conductible gel includes a plurality of conductive particles and a plurality of anti-dissociation substances; mounting a chip on the substrate, said chip comprises a plurality of copper-containing bumps, each of the copper-containing bumps comprises a ring surface and a second coupling surface having a plurality of second conductive contact areas and a plurality of second non-conductive contact areas, wherein the conductive particles are electrically connected with the first conductive contact areas and the second conductive contact areas, said anti-dissociation substances are in contact with the second non-conductive contact area, and the ring surfaces are covered with the anti-dis
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Shu-Chen Lin, Cheng-Fan Lin, Yung-Wei Hsieh, Bo-Shiun Jiang
  • Publication number: 20130214419
    Abstract: A semiconductor packaging method includes providing a substrate having a plurality of connection pads; mounting a chip on the substrate, wherein the chip comprises a plurality of copper-containing bumps directly coupled to the connection pads, and each of the copper-containing bumps comprises a ring surface; forming an anti-dissociation gel between the substrate and the chip, wherein the anti-dissociation gel comprises a plurality of anti-dissociation substances, and the ring surfaces of the copper-containing bumps are covered by the anti-dissociation substances.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Shu-Chen Lin, Cheng-Fan Lin, Yung-Wei Hsieh, Ming-Yi Liu
  • Patent number: 8501614
    Abstract: A method for manufacturing fine-pitch bumps comprises the steps of providing a silicon substrate; forming a titanium-containing metal layer on the silicon substrate, wherein the titanium-containing metal layer comprises a plurality of first zones and a plurality of second zones; forming a photoresist layer on the titanium-containing metal layer; patterning the photoresist layer to form a plurality of opening slots; forming a plurality of copper bumps at the opening slots, wherein each of the copper bumps comprises a first top surface and a ring surface; heating the photoresist layer to form a plurality of body portions and a plurality of removable portions; etching the photoresist layer; and removing the second zones to enable each of the first zones to form an under bump metallurgy layer having a bearing portion and an extending portion.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 6, 2013
    Assignee: Chipbond Technology Corporation
    Inventors: Cheng-Hung Shih, Yung-Wei Hsieh, Shu-Chen Lin, Cheng-Fan Lin, Hua-An Dai
  • Patent number: 8497579
    Abstract: A semiconductor packaging method includes providing a substrate having a plurality of pads, each of the pads comprises a first coupling surface having a plurality of first conductive contact areas and a plurality of first non-conductive contact areas; forming a conductible gel with anti-dissociation function on the substrate, said conductible gel includes a plurality of conductive particles and a plurality of anti-dissociation substances; mounting a chip on the substrate, said chip comprises a plurality of copper-containing bumps, each of the copper-containing bumps comprises a ring surface and a second coupling surface having a plurality of second conductive contact areas and a plurality of second non-conductive contact areas, wherein the conductive particles are electrically connected with the first conductive contact areas and the second conductive contact areas, said anti-dissociation substances are in contact with the second non-conductive contact area, and the ring surfaces are covered with the anti-dis
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 30, 2013
    Assignee: Chipbond Technology Corporation
    Inventors: Cheng-Hung Shih, Shu-Chen Lin, Cheng-Fan Lin, Yung-Wei Hsieh, Bo-Shiun Jiang
  • Publication number: 20130187265
    Abstract: A semiconductor structure comprises a carrier, a plurality of under bump metallurgy layers, a plurality of copper containing bumps and an organic barrier layer, wherein the carrier comprises a protective layer and a plurality of conductive pads, mentioned protective layer comprises a plurality of openings, the conductive pads exposed by the openings, mentioned under bump metallurgy layers being formed on the conductive pads, mentioned copper containing bumps being formed on the under bump metallurgy layers, each of the copper containing bumps comprises a top surface and a ring surface in connection with the top surface, mentioned organic barrier layer having a first coverage portion, and mentioned first coverage portion covers the top surface and the ring surface of each of the copper containing bumps.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Cheng-Hung Shih, Shu-Chen Lin, Yung-Wei Hsieh, Jun-Yu Yeh
  • Patent number: 8475939
    Abstract: An m-terphenyl derivative has a structure of formula (I) or (II): wherein A and B are five-membered heterocyclic compounds selected from the group consisting of pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,3,4-tetrazole, 1,2-thiazole, 1,3-thiazole and 1,3,4-thiadiazole, each of substituents R, R1 and R2 is a member independently selected from the group consisting of H, halo, cyano, trifluoromethyl, amino, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl and heteroaryl. The compound of the present invention may have advantages in good electron affinity, low HOMO and thereby achieving hole blocking and may be used for electron transport material and/or electron injection material.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: July 2, 2013
    Assignee: National Tsing Hua University
    Inventors: Chien-Hong Cheng, Cheng-An Wu, Fang-Iy Wu, Cheng-Hung Shih
  • Patent number: 8450049
    Abstract: A process for forming an anti-oxidant metal layer on an electronic device comprises the steps of providing a substrate; forming a conductive metal layer on the substrate; forming a first photoresist layer on the conductive metal layer; patterning the first photoresist layer to form apertures and first grooves; forming a connecting member having a top surface and a lateral surface in the aperture and the first groove; removing the first photoresist layer to reveal the top surface and the lateral surface; forming a second photoresist layer on the conductive metal layer; patterning the second photoresist layer to form apertures and second grooves; forming an anti-oxidant metal layer in aperture and second groove, the anti-oxidant metal layer covers the top surface and the lateral surface of the connecting member; and removing the second photoresist layer to reveal the anti-oxidant metal layer and the conductive metal layer.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: May 28, 2013
    Assignee: Chipbond Technology Corporation
    Inventors: Chih-Ming Kuo, Yie-Chuan Chiu, Cheng-Hung Shih, Lung-Hua Ho
  • Patent number: 8437142
    Abstract: A bump structure comprises a first polymer block, a second polymer block, a first groove, an under bump metallurgy layer and a connection metal layer, wherein the first polymer block and the second polymer block are individual blocks. The first polymer block comprises a first connection slot, and the second polymer block comprises a second connection slot communicated with the first groove and the first connection slot. The under bump metallurgy layer covers the first polymer block and the second polymer block to form a second groove. The connection metal layer covers the under bump metallurgy layer to form a third groove, wherein the under bump metallurgy layer covers a first coverage area of the first polymer block and a second coverage area of the second polymer block and reveals a first exposure area of the first polymer block and a second exposure area of the second polymer block.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: May 7, 2013
    Assignee: Chipbond Technology Corporation
    Inventors: Cheng-Hung Shih, Shyh-Jen Guo, Wen-Tung Chen
  • Publication number: 20120318570
    Abstract: A bump structure comprises a first polymer block, a second polymer block, a first groove, an under bump metallurgy layer and a connection metal layer, wherein the first polymer block and the second polymer block are individual blocks. The first polymer block comprises a first connection slot, and the second polymer block comprises a second connection slot communicated with the first groove and the first connection slot. The under bump metallurgy layer covers the first polymer block and the second polymer block to form a second groove. The connection metal layer covers the under bump metallurgy layer to form a third groove, wherein the under bump metallurgy layer covers a first coverage area of the first polymer block and a second coverage area of the second polymer block and reveals a first exposure area of the first polymer block and a second exposure area of the second polymer block.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Inventors: Cheng-Hung Shih, Shyh-Jen Guo, Wen-Tung Chen
  • Publication number: 20120319271
    Abstract: A bump structure comprises a first polymer block, a second polymer block, a first groove, an under bump metallurgy layer and a connection metal layer, wherein the first polymer block and the second polymer block are individual blocks. The first polymer block and the second polymer block are located at two sides of the first groove, the first polymer block comprises a first connection slot, and the second polymer block comprises a second connection slot communicated with the first connection slot and the first groove. The under bump metallurgy layer covers the first polymer block and the second polymer block to form a second groove, a third connection slot and a fourth connection slot communicated with each other. The connection metal layer covers the under bump metallurgy layer to form a third groove, a fifth connection slot and a sixth connection slot communicated with each other.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Inventors: Cheng-Hung Shih, Shyh-Jen Guo, Wen-Tung Chen