Patents by Inventor Cheng-Yi Wu
Cheng-Yi Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12227839Abstract: A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.Type: GrantFiled: November 17, 2023Date of Patent: February 18, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Peng-Cheng Hong, Jun-Liang Pu, W. L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
-
Patent number: 12154608Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.Type: GrantFiled: August 8, 2023Date of Patent: November 26, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
-
Patent number: 12125548Abstract: A method of testing a non-volatile memory (NVM) array includes heating the NVM array to a target temperature, and while the NVM array is heated to the target temperature, programming a subset of the NVM cells to first resistance levels and obtaining a first current distribution, programming the subset of NVM cells to second resistance levels and obtaining a second current distribution, calculating a current threshold level from the first and second current distributions, and for each of the NVM cells, programing the NVM cell to one of the first or second resistance levels, and using the current threshold level to determine a first pass/fail (P/F) status and a second P/F status at the programmed resistance level. A bit error rate (BER) of the NVM array is calculated based on the first and second current distributions and the first and second P/F status of each of the NVM cells.Type: GrantFiled: July 25, 2023Date of Patent: October 22, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chien-Hao Huang, Katherine H. Chiang, Cheng-Yi Wu, Chung-Te Lin
-
Publication number: 20240331795Abstract: It is checked, using machine learning, whether at least one fail bit in a memory block of a memory is unrepairable, according to a location of the at least one fail bit, and an available repair resource in the memory. When the checking indicates that the at least one fail bit is not unrepairable, it is determined whether a CSP containing constraints is solvable. The constraints correspond to the location of the at least one fail bit in the memory block, and the available repair resource. In response to determining that the CSP is not solvable, the memory block is marked as unrepairable or the memory is rejected. In response to the checking, using the machine learning, indicating that the at least one fail bit is unrepairable, the memory block is marked as unrepairable or the memory is rejected, without making further determinations as to repairability of the memory block.Type: ApplicationFiled: June 11, 2024Publication date: October 3, 2024Inventors: Katherine H. CHIANG, Chien-Hao HUANG, Cheng-Yi WU, Chung-Te LIN
-
Patent number: 12014790Abstract: A location of at least one fail bit to be repaired in a memory block of a memory is extracted from at least one memory test on the memory block. An available repair resource in the memory for repairing the memory block is obtained. It is checked, using machine learning, whether the at least one fail bit is unrepairable, according to the location of the at least one fail bit, and the available repair resource. When the checking indicates that the at least one fail bit is not unrepairable, it is determined whether a Constraint Satisfaction Problem (CSP) containing a plurality of constraints is solvable. The constraints correspond to the location of the at least one fail bit in the memory block, and the available repair resource. In response to determining that the CSP is not solvable, the memory block is marked as unrepairable or the memory is rejected.Type: GrantFiled: July 26, 2022Date of Patent: June 18, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Katherine H. Chiang, Chien-Hao Huang, Cheng-Yi Wu, Chung-Te Lin
-
Patent number: 11990167Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.Type: GrantFiled: June 21, 2021Date of Patent: May 21, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
-
Publication number: 20240162318Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.Type: ApplicationFiled: January 26, 2024Publication date: May 16, 2024Inventors: Min-Kun DAI, Wei-Gang CHIU, I-Cheng CHANG, Cheng-Yi WU, Han-Ting TSAI, Tsann LIN, Chung-Te LIN
-
Publication number: 20240136441Abstract: A semiconductor device includes a substrate, and a first transistor disposed on the substrate. The first transistor includes a first channel layer, a magnesium oxide layer, a first gate electrode, a first gate dielectric and first source/drain electrodes. A crystal orientation of the first channel layer is <100> or <110>. The magnesium oxide layer is located below the first channel layer and in contact with the first channel layer. The first gate electrode is located over the first channel layer. The first gate dielectric is located in between the first channel layer and the first gate electrode. The first source/drain electrodes are disposed on the first channel layer.Type: ApplicationFiled: February 5, 2023Publication date: April 25, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ken-Ichi Goto, Cheng-Yi Wu
-
Patent number: 11935935Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.Type: GrantFiled: November 11, 2021Date of Patent: March 19, 2024Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Min-Kun Dai, Wei-Gang Chiu, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin
-
Publication number: 20240084447Abstract: A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.Type: ApplicationFiled: November 17, 2023Publication date: March 14, 2024Inventors: Peng-Cheng Hong, Jun-Liang Pu, W.L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
-
Patent number: 11920238Abstract: A method of making a sealing article that includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.Type: GrantFiled: July 22, 2022Date of Patent: March 5, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Peng-Cheng Hong, Jun-Liang Pu, W. L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
-
Patent number: 11901295Abstract: A method for semiconductor manufacturing is disclosed. The method includes receiving a device having a first surface through which a first metal or an oxide of the first metal is exposed. The method further includes depositing a dielectric film having Si, N, C, and O over the first surface such that the dielectric film has a higher concentration of N and C in a first portion of the dielectric film near the first surface than in a second portion of the dielectric film further away from the first surface than the first portion. The method further includes forming a conductive feature over the dielectric film. The dielectric film electrically insulates the conductive feature from the first metal or the oxide of the first metal.Type: GrantFiled: April 4, 2022Date of Patent: February 13, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Cheng-Yi Wu, Li-Hsuan Chu, Ching-Wen Wen, Chia-Chun Hung, Chen Liang Chang, Chin-Szu Lee, Hsiang Liu
-
Publication number: 20240021230Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.Type: ApplicationFiled: August 8, 2023Publication date: January 18, 2024Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
-
Patent number: 11851754Abstract: A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.Type: GrantFiled: November 2, 2017Date of Patent: December 26, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Peng-Cheng Hong, Jun-Liang Pu, W. L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
-
Patent number: 11850143Abstract: A tissue repair device and a method for using the same are provided. The tissue repair device includes a body portion and at least one wire. The body portion includes an inner layer and an outer layer. The inner layer is close to a tissue, wherein the inner layer includes a hydrophilic structure, and the outer layer includes a hydrophobic structure. The wire is connected to the body portion to fix the body portion to the tissue.Type: GrantFiled: April 29, 2021Date of Patent: December 26, 2023Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Chih-Chieh Huang, Jeng-Liang Kuo, Hui-Ting Huang, Shiun-Yin Chang, Meng-Hsueh Lin, Cheng-Yi Wu, Lih-Tao Hsu, Pei-I Tsai, Hsin-Hsin Shen, Chih-Yu Chen, Kuo-Yi Yang, Chun-Hsien Ma
-
Patent number: 11837667Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.Type: GrantFiled: June 29, 2022Date of Patent: December 5, 2023Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Min-Kun Dai, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin, Wei-Gang Chiu
-
Publication number: 20230377670Abstract: A method of testing a non-volatile memory (NVM) array includes heating the NVM array to a target temperature, and while the NVM array is heated to the target temperature, programming a subset of the NVM cells to first resistance levels and obtaining a first current distribution, programming the subset of NVM cells to second resistance levels and obtaining a second current distribution, calculating a current threshold level from the first and second current distributions, and for each of the NVM cells, programing the NVM cell to one of the first or second resistance levels, and using the current threshold level to determine a first pass/fail (P/F) status and a second P/F status at the programmed resistance level. A bit error rate (BER) of the NVM array is calculated based on the first and second current distributions and the first and second P/F status of each of the NVM cells.Type: ApplicationFiled: July 25, 2023Publication date: November 23, 2023Inventors: Chien-Hao HUANG, Katherine H. CHIANG, Cheng-Yi WU, Chung-Te LIN
-
Patent number: 11776647Abstract: A semiconductor device is provided, which contains a memory bank including M primary word lines and R replacement word lines, a row/column decoder, and an array of redundancy fuse elements. A sorted primary failed bit count list is generated in a descending order for the bit fail counts per word line. A sorted replacement failed bit count list is generated in an ascending order of the M primary word lines in an ascending order. The primary word lines are replaced with the replacement word lines from top to bottom on the lists until a primary failed bit count equals a replacement failed bit count or until all of the replacement word lines are used up. Optionally, the sorted primary failed bit count list may be re-sorted in an ascending or descending order of the word line address prior to the replacement process.Type: GrantFiled: November 7, 2022Date of Patent: October 3, 2023Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Chien-Hao Huang, Cheng-Yi Wu, Katherine H. Chiang, Chung-Te Lin
-
Patent number: 11728170Abstract: A semiconductor device includes: a fin structure disposed on a substrate; a gate feature that traverses the fin structure to overlay a central portion of the fin structure; a pair of source/drain features, along the fin structure, that are disposed at respective sides of the gate feature; and a plurality of contact structures that are formed of tungsten, wherein a gate electrode of the gate feature and the pair of source/drain features are each directly coupled to a respective one of the plurality of contact structures.Type: GrantFiled: July 8, 2021Date of Patent: August 15, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hong-Ying Lin, Cheng-Yi Wu, Alan Tu, Chung-Liang Cheng, Li-Hsuan Chu, Ethan Hsiao, Hui-Lin Sung, Sz-Yuan Hung, Sheng-Yung Lo, C. W. Chiu, Chih-Wei Hsieh, Chin-Szu Lee
-
Patent number: 11715546Abstract: A method of testing a non-volatile memory (NVM) array includes obtaining a current distribution of a subset of NVM cells of the NVM array, the current distribution including first and second portions corresponding to respective logically high and low states of the subset of NVM cells, programming an entirety of the NVM cells of the NVM array to one of the logically high or low states, determining an initial bit error rate (BER) by performing first and second pass/fail (P/F) tests on each NVM cell of the NVM array, and using the current distribution to adjust the initial BER rate. Each of obtaining the current distribution, programming the entirety of the NVM cells, and performing the first and second P/F tests is performed while the NVM array is heated to a target temperature.Type: GrantFiled: August 10, 2022Date of Patent: August 1, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chien-Hao Huang, Katherine H. Chiang, Cheng-Yi Wu, Chung-Te Lin