Patents by Inventor Cheng-Yi Wu

Cheng-Yi Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11062908
    Abstract: A semiconductor device includes: a fin structure disposed on a substrate; a gate feature that traverses the fin structure to overlay a central portion of the fin structure; a pair of source/drain features, along the fin structure, that are disposed at respective sides of the gate feature; and a plurality of contact structures that are formed of tungsten, wherein a gate electrode of the gate feature and the pair of source/drain features are each directly coupled to a respective one of the plurality of contact structures.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hong-Ying Lin, Cheng-Yi Wu, Alan Tu, Chung-Liang Cheng, Li-Hsuan Chu, Ethan Hsiao, Hui-Lin Sung, Sz-Yuan Hung, Sheng-Yung Lo, C. W. Chiu, Chih-Wei Hsieh, Chin-Szu Lee
  • Publication number: 20210210350
    Abstract: A method includes providing a semiconductor structure having an active region and an isolation structure adjacent to the active region, the active region having source and drain regions sandwiching a channel region for a transistor, the semiconductor structure further having a gate structure over the channel region. The method further includes etching a trench in one of the source and drain regions, wherein the trench exposes a portion of a sidewall of the isolation structure, epitaxially growing a first semiconductor layer in the trench, epitaxially growing a second semiconductor layer over the first semiconductor layer, changing a crystalline facet orientation of a portion of a top surface of the second semiconductor layer by an etching process, and epitaxially growing a third semiconductor layer over the second semiconductor layer after the changing of the crystalline facet orientation.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 8, 2021
    Inventors: Wen-Chin Chen, Cheng-Yi Wu, Yu-Hung Cheng, Ren-Hua Guo, Hsiang Liu, Chin-Szu Lee
  • Patent number: 11043251
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: June 22, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
  • Patent number: 10957540
    Abstract: A method includes providing a semiconductor structure having an active region and an isolation structure adjacent to the active region, the active region having source and drain regions sandwiching a channel region for a transistor, the semiconductor structure further having a gate structure over the channel region. The method further includes etching a trench in one of the source and drain regions, wherein the trench exposes a portion of a sidewall of the isolation structure, epitaxially growing a first semiconductor layer in the trench, epitaxially growing a second semiconductor layer over the first semiconductor layer, changing a crystalline facet orientation of a portion of a top surface of the second semiconductor layer by an etching process, and epitaxially growing a third semiconductor layer over the second semiconductor layer after the changing of the crystalline facet orientation.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: March 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Chin Chen, Cheng-Yi Wu, Yu-Hung Cheng, Ren-Hua Guo, Hsiang Liu, Chin-Szu Lee
  • Publication number: 20200312894
    Abstract: A plurality of radiation-sensing doped regions are formed in a substrate. A trench is formed in the substrate between the radiation-sensing doped regions. A SiOCN layer is filled in the trench by reacting Bis(tertiary-butylamino)silane (BTBAS) and a gas mixture comprising N2O, N2 and O2 through a plasma enhanced atomic layer deposition (PEALD) method, to form an isolation structure between the radiation-sensing doped regions.
    Type: Application
    Filed: June 14, 2020
    Publication date: October 1, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Ching Chang, Sheng-Chan Li, Chih-Hui Huang, Jian-Shin Tsai, Cheng-Yi Wu, Chia-Hsing Chou, Yi-Ming Lin, Min-Hui Lin, Chin-Szu Lee
  • Patent number: 10763116
    Abstract: A semiconductor device includes: a fin structure disposed on a substrate; a gate feature that traverses the fin structure to overlay a central portion of the fin structure; a pair of source/drain features, along the fin structure, that are disposed at respective sides of the gate feature; and a plurality of contact structures that are formed of tungsten, wherein a gate electrode of the gate feature and the pair of source/drain features are each directly coupled to a respective one of the plurality of contact structures.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hong-Ying Lin, Cheng-Yi Wu, Alan Tu, Chung-Liang Cheng, Li-Hsuan Chu, Ethan Hsiao, Hui-Lin Sung, Sz-Yuan Hung, Sheng-Yung Lo, C. W. Chiu, Chih-Wei Hsieh, Chin-Szu Lee
  • Publication number: 20200203040
    Abstract: A cable structure and a manufacturing method thereof are provided. The cable structure includes a transmission component and a protection component. The transmission component includes at least one first intermedium unit, and the least one first intermedium unit includes at least one first transmission cable and a first barrier layer covering the at least one first transmission cable. The protection component includes at least one shielding layer covering the at least one first intermedium unit and an insulating layer covering the at least one shielding layer. The at least one shielding layer includes a metal foil layer covering the at least one first intermedium unit and at least one conducting layer formed on a surface of the metal foil layer.
    Type: Application
    Filed: May 24, 2019
    Publication date: June 25, 2020
    Inventors: CHENG-YI WU, CHEN-CHE LIEN
  • Publication number: 20200176041
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.
    Type: Application
    Filed: September 10, 2019
    Publication date: June 4, 2020
    Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
  • Patent number: 10658296
    Abstract: A method for semiconductor manufacturing is disclosed. The method includes receiving a device having a first surface through which a first metal or an oxide of the first metal is exposed. The method further includes depositing a dielectric film having Si, N, C, and O over the first surface such that the dielectric film has a higher concentration of N and C in a first portion of the dielectric film near the first surface than in a second portion of the dielectric film further away from the first surface than the first portion. The method further includes forming a conductive feature over the dielectric film. The dielectric film electrically insulates the conductive feature from the first metal or the oxide of the first metal.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Wu, Li-Hsuan Chu, Ching-Wen Wen, Chia-Chun Hung, Chen Liang Chang, Chin-Szu Lee, Hsiang Liu
  • Publication number: 20200126793
    Abstract: A method includes providing a semiconductor structure having an active region and an isolation structure adjacent to the active region, the active region having source and drain regions sandwiching a channel region for a transistor, the semiconductor structure further having a gate structure over the channel region. The method further includes etching a trench in one of the source and drain regions, wherein the trench exposes a portion of a sidewall of the isolation structure, epitaxially growing a first semiconductor layer in the trench, epitaxially growing a second semiconductor layer over the first semiconductor layer, changing a crystalline facet orientation of a portion of a top surface of the second semiconductor layer by an etching process, and epitaxially growing a third semiconductor layer over the second semiconductor layer after the changing of the crystalline facet orientation.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Wen-Chin Chen, Cheng-Yi Wu, Yu-Hung Cheng, Ren-Hua Guo, Hsiang Liu, Chin-Szu Lee
  • Publication number: 20200083168
    Abstract: A method for semiconductor manufacturing is disclosed. The method includes receiving a device having a first surface through which a first metal or an oxide of the first metal is exposed. The method further includes depositing a dielectric film having Si, N, C, and O over the first surface such that the dielectric film has a higher concentration of N and C in a first portion of the dielectric film near the first surface than in a second portion of the dielectric film further away from the first surface than the first portion. The method further includes forming a conductive feature over the dielectric film. The dielectric film electrically insulates the conductive feature from the first metal or the oxide of the first metal.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: Cheng-Yi Wu, Li-Hsuan Chu, Ching-Wen Wen, Chia-Chun Hung, Chen Liang Chang, Chin-Szu Lee, Hsiang Liu
  • Publication number: 20200043739
    Abstract: A semiconductor device includes: a fin structure disposed on a substrate; a gate feature that traverses the fin structure to overlay a central portion of the fin structure; a pair of source/drain features, along the fin structure, that are disposed at respective sides of the gate feature; and a plurality of contact structures that are formed of tungsten, wherein a gate electrode of the gate feature and the pair of source/drain features are each directly coupled to a respective one of the plurality of contact structures.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Inventors: Hong-Ying LIN, Cheng-Yi WU, Alan TU, Chung-Liang CHENG, Li-Hsuan CHU, Ethan HSIAO, Hui-Lin SUNG, Sz-Yuan HUNG, Sheng-Yung LO, C.W. CHIU, Chih-Wei Hsieh, Chin-Szu LEE
  • Patent number: 10522353
    Abstract: A method includes providing a semiconductor structure having an active region and an isolation structure adjacent to the active region, the active region having source and drain regions sandwiching a channel region for a transistor, the semiconductor structure further having a gate structure over the channel region. The method further includes etching a trench in one of the source and drain regions, wherein the trench exposes a portion of a sidewall of the isolation structure, epitaxially growing a first semiconductor layer in the trench, epitaxially growing a second semiconductor layer over the first semiconductor layer, changing a crystalline facet orientation of a portion of a top surface of the second semiconductor layer by an etching process, and epitaxially growing a third semiconductor layer over the second semiconductor layer after the changing of the crystalline facet orientation.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Chin Chen, Cheng-Yi Wu, Yu-Hung Cheng, Ren-Hua Guo, Hsiang Liu, Chin-Szu Lee
  • Patent number: 10497729
    Abstract: An image sensor includes a substrate having a first region and a second region. The image sensor further includes a dielectric layer over the substrate. The image sensor further includes a conductive layer over the dielectric layer, wherein in the first region the conductive layer has a grid shape and in the second region a portion of the conductive layer is concave toward the substrate. The image sensor further includes a protective layer, wherein the protective layer is over the conductive layer in the first region, and over a top surface and along sidewalls of the conductive layer in the second region.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 3, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Wu, Chun-Chih Lin, Jian-Shin Tsai, Min-Hui Lin, Wen-Shan Chang, Yi-Ming Lin, Chao-Ching Chang, C. H. Chen, Chin-Szu Lee, Y. T. Tsai
  • Publication number: 20190265277
    Abstract: A circuit board for testing and a method of operating the same are provided. A relay is installed on a body of a circuit board having a probe. At least one external conductive line is arranged between the probe and the relay. During high-frequency signal testing, a transmission route is to transmit high-frequency signals to a test machine by means of the external conductive line, but is not to transmit high-frequency signals to a test machine by means of the relay. Accordingly, the limitation of the bandwidth condition of the relay can be avoided.
    Type: Application
    Filed: October 9, 2018
    Publication date: August 29, 2019
    Inventors: Sheng-Yu Tseng, Cheng-Yi Wu
  • Publication number: 20190131134
    Abstract: A semiconductor device includes: a fin structure disposed on a substrate; a gate feature that traverses the fin structure to overlay a central portion of the fin structure; a pair of source/drain features, along the fin structure, that are disposed at respective sides of the gate feature; and a plurality of contact structures that are formed of tungsten, wherein a gate electrode of the gate feature and the pair of source/drain features are each directly coupled to a respective one of the plurality of contact structures.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Hong-Ying LIN, Cheng-Yi Wu, Alan Tu, Chung-Liang Cheng, Li-Hsuan Chu, Ethan Hsiao, Hui-Lin Sung, Sz-Yuan Hung, Sean Lo, C.W. Chiu, Chih-Wei Hsieh, Chin-Szu Lee
  • Publication number: 20190093220
    Abstract: A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.
    Type: Application
    Filed: November 2, 2017
    Publication date: March 28, 2019
    Inventors: Peng-Cheng Hong, Jun-Liang Pu, W.L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
  • Publication number: 20190088692
    Abstract: An image sensor includes a substrate having a first region and a second region. The image sensor further includes a dielectric layer over the substrate. The image sensor further includes a conductive layer over the dielectric layer, wherein in the first region the conductive layer has a grid shape and in the second region a portion of the conductive layer is concave toward the substrate. The image sensor further includes a protective layer, wherein the protective layer is over the conductive layer in the first region, and over a top surface and along sidewalls of the conductive layer in the second region.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Inventors: Cheng-Yi WU, Chun-Chih LIN, Jian-Shin TSAI, Min-Hui LIN, Wen-Shan CHANG, Yi-Ming LIN, Chao-Ching CHANG, C. H. CHEN, Chin-Szu LEE, Y. T. TSAI
  • Publication number: 20180350601
    Abstract: A method includes providing a semiconductor structure having an active region and an isolation structure adjacent to the active region, the active region having source and drain regions sandwiching a channel region for a transistor, the semiconductor structure further having a gate structure over the channel region. The method further includes etching a trench in one of the source and drain regions, wherein the trench exposes a portion of a sidewall of the isolation structure, epitaxially growing a first semiconductor layer in the trench, epitaxially growing a second semiconductor layer over the first semiconductor layer, changing a crystalline facet orientation of a portion of a top surface of the second semiconductor layer by an etching process, and epitaxially growing a third semiconductor layer over the second semiconductor layer after the changing of the crystalline facet orientation.
    Type: Application
    Filed: July 24, 2018
    Publication date: December 6, 2018
    Inventors: Wen-Chin Chen, Cheng-Yi Wu, Yu-Hung Cheng, Ren-Hua Guo, Hsiang Liu, Chin-Szu Lee
  • Patent number: 10147609
    Abstract: A method includes providing a semiconductor structure having an active region and an isolation structure adjacent to the active region, the active region having source and drain regions sandwiching a channel region for a transistor, the semiconductor structure further having a gate structure over the channel region. The method further includes etching a trench in one of the source and drain regions, wherein the trench exposes a portion of a sidewall of the isolation structure, epitaxially growing a first semiconductor layer in the trench, epitaxially growing a second semiconductor layer over the first semiconductor layer, changing a crystalline facet orientation of a portion of a top surface of the second semiconductor layer by an etching process, and epitaxially growing a third semiconductor layer over the second semiconductor layer after the changing of the crystalline facet orientation.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 4, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Chin Chen, Cheng-Yi Wu, Yu-Hung Cheng, Ren-Hua Guo, Hsiang Liu, Chin-Szu Lee